LExan Bubble Chamber

Last updated
LEBC2, the Lexan bubble chamber, which had a diameter of 20 cm and was made of transparent plastic. Lexan bubble chamber.jpg
LEBC2, the Lexan bubble chamber, which had a diameter of 20 cm and was made of transparent plastic.

The construction of the LExan Bubble Chamber, LEBC, was approved by the CERN Research Board on 16 November 1978. [1]

Bubble chambers are similar to cloud chambers, both in application and in basic principle. A chamber is normally made by filling a large cylinder with a liquid heated to just below its boiling point. As particles enter the chamber, a piston suddenly decreases its pressure, and the liquid enters into a superheated, metastable phase. Charged particles create an ionization track, around which the liquid vaporizes, forming microscopic bubbles. Bubble density around a track is proportional to a particle's energy loss. Bubbles grow in size as the chamber expands, until they are large enough to be seen or photographed. Several cameras are mounted around it, allowing a three-dimensional image of an event to be captured.

LEBC was 20 centimetres in diameter and contained one litre of liquid hydrogen. It was designed to look for charmed particles, a type of particles that are so unstable that they usually decay too quickly to be detected in big bubble chambers. The bubbles in a small chamber like LEBC were about ten times smaller compared to the bubbles in the large chambers. Hence, LEBC had a higher probability of detecting short tracks. [2] LEBC was used for several CERN experiments in Geneva, among others NA13, NA16 and NA27, before it was transported to Fermilab outside Chicago where it was used for experiment E743. [3] The NA13 experiment was performed by exposing LEBC without any down-stream particle spectrometer. While for the NA16 experiment, LEBC was placed at the vertex position of the European Hybrid Spectrometer (EHS) that provided momentum analysis, particle identification and gamma detection for secondaries emerging from the hydrogen interactions. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Bubble chamber</span> Vessel filled with a superheated transparent liquid

A bubble chamber is a vessel filled with a superheated transparent liquid used to detect electrically charged particles moving through it. It was invented in 1952 by Donald A. Glaser, for which he was awarded the 1960 Nobel Prize in Physics. Supposedly, Glaser was inspired by the bubbles in a glass of beer; however, in a 2006 talk, he refuted this story, although saying that while beer was not the inspiration for the bubble chamber, he did experiments using beer to fill early prototypes.

<span class="mw-page-title-main">Gargamelle</span> CERN Bubble chamber particle detector

Gargamelle was a heavy liquid bubble chamber detector in operation at CERN between 1970 and 1979. It was designed to detect neutrinos and antineutrinos, which were produced with a beam from the Proton Synchrotron (PS) between 1970 and 1976, before the detector was moved to the Super Proton Synchrotron (SPS). In 1979 an irreparable crack was discovered in the bubble chamber, and the detector was decommissioned. It is currently part of the "Microcosm" exhibition at CERN, open to the public.

<span class="mw-page-title-main">Jack Steinberger</span> German-American physicist, Nobel laureate (1921–2020)

Jack Steinberger was a German-born American physicist noted for his work with neutrinos, the subatomic particles considered to be elementary constituents of matter. He was a recipient of the 1988 Nobel Prize in Physics, along with Leon M. Lederman and Melvin Schwartz, for the discovery of the muon neutrino. Through his career as an experimental particle physicist, he held positions at the University of California, Berkeley, Columbia University (1950–68), and the CERN (1968–86). He was also a recipient of the United States National Medal of Science in 1988, and the Matteucci Medal from the Italian Academy of Sciences in 1990.

A wire chamber or multi-wire proportional chamber is a type of proportional counter that detects charged particles and photons and can give positional information on their trajectory, by tracking the trails of gaseous ionization.

<span class="mw-page-title-main">Time projection chamber</span>

In physics, a time projection chamber (TPC) is a type of particle detector that uses a combination of electric fields and magnetic fields together with a sensitive volume of gas or liquid to perform a three-dimensional reconstruction of a particle trajectory or interaction.

The European Muon Collaboration (EMC) was formed in 1973 to study the interactions of high energy muons at CERN. These experiments were motivated by the interest in determining the quark structure of the nucleon following the discovery of high levels of deep inelastic scattering at SLAC.

<span class="mw-page-title-main">DØ experiment</span> Particle physics research project (1983–2011)

The DØ experiment was a worldwide collaboration of scientists conducting research on the fundamental nature of matter. DØ was one of two major experiments located at the Tevatron Collider at Fermilab in Batavia, Illinois. The Tevatron was the world's highest-energy accelerator from 1983 until 2009, when its energy was surpassed by the Large Hadron Collider. The DØ experiment stopped taking data in 2011, when the Tevatron shut down, but data analysis is still ongoing. The DØ detector is preserved in Fermilab's DØ Assembly Building as part of a historical exhibit for public tours.

George Ernest Kalmus, CBE, FRS is a noted British particle physicist.

Dr. George Randolph Kalbfleisch was a US particle physicist.

<span class="mw-page-title-main">COMPASS experiment</span>

The NA58 experiment, or COMPASS is a 60-metre-long fixed-target experiment at the M2 beam line of the SPS at CERN. The experimental hall is located at the CERN North Area, close to the French village of Prévessin-Moëns. The experiment is a two-staged spectrometer with numerous tracking detectors, particle identification and calorimetry. The physics results are extracted by recording and analysing the final states of the scattering processes. The versatile set-up, the use of different targets and particle beams allow the investigation of various processes. The main physics goals are the investigation of the nucleon spin structure and hadron spectroscopy. The collaboration consists of 220 physicists from 13 different countries, involving 28 universities and research institutes.

<span class="mw-page-title-main">Big European Bubble Chamber</span> Particle detector used at CERN 1973–84

The Big European Bubble Chamber (BEBC) is a large detector formerly used to study particle physics at CERN. The chamber body, a stainless-steel vessel, was filled with 35 cubic metres of superheated liquid hydrogen, liquid deuterium, or a neon-hydrogen mixture, whose sensitivity was regulated by means of a movable piston weighing 2 tons. The liquids at typical operation temperatures around 27 K were placed under overpressure of about 5 standard atmospheres (510 kPa). The piston expansion, synchronized with the charged particle beam crossing the chamber volume, caused a rapid pressure drop; in consequence the liquid reached its boiling point. During each expansion, charged particles ionized the atoms of the liquid as they passed through it and the energy deposited by them initiated boiling along their path, leaving trails of tiny bubbles. These tracks were photographed by the five cameras mounted on top of the chamber. The stereo photographs were subsequently scanned and all events finally evaluated by a team of scientists. After each expansion, the pressure was increased again to stop the boiling. The bubble chamber was then ready again for a new cycle of beam exposure.

<span class="mw-page-title-main">NA62 experiment</span>

The NA62 experiment is a fixed-target particle physics experiment in the North Area of the SPS accelerator at CERN. The experiment was approved in February 2007. Data taking began in 2015, and the experiment is expected to become the first in the world to probe the decays of the charged kaon with probabilities down to 10−12. The experiment's spokesperson is Cristina Lazzeroni. The collaboration involves 333 individuals from 30 institutions and 13 countries around the world.

ICARUS is a physics experiment aimed at studying neutrinos. It was located at the Laboratori Nazionali del Gran Sasso (LNGS) where it started operations in 2010. After completion of its operations there, it was refurbished at CERN for re-use at Fermilab, in the same neutrino beam as the MiniBooNE, MicroBooNE and Short Baseline Near Detector (SBND) experiments. The ICARUS detector was then taken apart for transport and reassembled at Fermilab, where data collection is expected to begin in fall 2021.

<span class="mw-page-title-main">NA32 experiment</span>

NA32, "Investigation of Charm Production in Hadronic Interactions Using High - Resolution Silicon Detectors" was a research project at CERN. The project was approved on 18 November 1982, data taking completed on 20 August 1986 and the analysis of the results was formally considered finished on 20 August 1996. The experiment was also known as ACCMOR, an acronym of the names of the collaborating research institutes which carried it out — the Amsterdam-Bristol-CERN-Cracow-Munich-Rutherford Collaboration, which was also responsible for the WA3 experiment.

The Holographic Lexan Bubble Chamber, HOLEBC, was a hydrogen bubble chamber.

<span class="mw-page-title-main">Berne Infinitesimal Bubble Chamber</span>

The Berne Infinitesimal Bubble Chamber, BIBC, was almost pocket size, 6.5 centimetres across and with a visible volume containing about a wine glass of heavy liquid.

<span class="mw-page-title-main">81 cm Saclay Bubble Chamber</span> Particle detector built in France, 1960

The 81 cm Saclay Bubble Chamber was a liquid hydrogen bubble chamber built at Saclay, in collaboration with the École Polytechnique (Orsay), to study particle physics. The team led by Bernard Gregory completed the construction of the chamber in 1960 and later it was moved to CERN and installed at the Proton Synchrotron (PS).

<span class="mw-page-title-main">2 m Bubble Chamber (CERN)</span> Particle detector commissioned in 1964

The 2m Bubble Chamber was a device used in conjunction with CERN’s 25 GeV Proton Synchrotron (PS) machine to study high-energy physics. It was decided to build this chamber in 1958 with a large team of physicists, engineers, technicians and designers led by Charles Peyrou. This project was of considerable magnitude, thus requiring a long-term plan so that all its characteristics could be carefully studied. Several models of this chamber were built and the problems encountered surpassed any of its predecessors. The construction only began three years later and in 1964 the chamber was finally commissioned. This chamber was devoted to the study of interaction mechanisms of high-energy particles and the investigation of the properties of their excited states.

<span class="mw-page-title-main">30 cm Bubble Chamber (CERN)</span> CERN high-energy particle detector

The 30 cm Bubble Chamber, prototyped as a 10 cm Bubble Chamber, was a particle detector used to study high-energy physics at CERN.

William J. Willis was an American experimental particle physicist.

References

  1. "Decisions of the 29th Meeting of the Research Board held on 16 November, 1978" (PDF). CERN-RB-29. Geneva: CERN. 1978-11-16. p. 2.
  2. "From BEBC to LEBC and now BIBC". CERN Bulletin. Geneva: CERN. 1980-03-03. p. 1.
  3. "E743 - Charm production in pp collisions with LEBC-FMPS". Fermilab Conference Office. Fermilab. 2002-11-16. Archived from the original on November 16, 2002. Retrieved 2016-06-21.
  4. Benichou, J.L.; Hervé, A.; Leutz, H.; Passardi, G.; Seidl, W.; Tischhauser, J.; Wenninger, H.; Fisher, C.M. (1981). "A rapid cycling hydrogen bubble chamber with high spatial resolution for visualizing charmed particle decays". Nuclear Instruments and Methods in Physics Research. 190 (3): 487–502. Bibcode:1981NIMPR.190..487B. doi:10.1016/0029-554X(81)90948-4. ISSN   0167-5087.