Lactisole

Last updated
Lactisole
Lactisole Structural Formula V.1.svg
Lactisole ions ball.png
Names
IUPAC name
Sodium 2-(4-methoxyphenoxy)propanoate
Other names
Lactisole; ORP 178; Propanoic acid, 2-(4-methoxyphenoxy), sodium salt
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.123.510 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C10H12O4.Na/c1-7(10(11)12)14-9-5-3-8(13-2)4-6-9;/h3-7H,1-2H3,(H,11,12);/q;+1/p-1 Yes check.svgY
    Key: SKORRGYRKQDXRS-UHFFFAOYSA-M Yes check.svgY
  • InChI=1/C10H12O4.Na/c1-7(10(11)12)14-9-5-3-8(13-2)4-6-9;/h3-7H,1-2H3,(H,11,12);/q;+1/p-1
    Key: SKORRGYRKQDXRS-REWHXWOFAP
  • [Na+].[O-]C(=O)C(Oc1ccc(OC)cc1)C
Properties
C10H11O4Na
Molar mass 218.188 g/mol
Appearancewhite to pale cream, crystalline solid
Melting point 190 °C (374 °F; 463 K)
Soluble in water and propylene glycol, slightly soluble in fat and miscible at room temperature in ethanol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Lactisole is the sodium salt and commonly supplied form of 2-(4-methoxy phenoxy)propionic acid, a natural carboxylic acid found in roasted coffee beans. Like gymnemic acid, it has the property of masking sweet flavors and is used for this purpose in the food industry. [1]

Contents

Chemistry

Chemically, lactisole is a double ether of hydroquinone. Since it contains an asymmetric carbon atom the molecule is chiral, with the S enantiomer predominating in natural sources and being primarily responsible for the sweetness-masking effect. Commercial lactisole is a racemic mixture of the R and S forms. [2]

Natural occurrences

The parent acid of lactisole was discovered in 1989 in roasted Colombian arabica coffee beans in a concentration of 0.5 to 1.2 ppm. [3]

Anti-sweet properties

At concentrations of 100150 parts per million in food, lactisole largely suppresses the ability to perceive sweet tastes, both from sugar and from artificial sweeteners such as aspartame. A 12% sucrose solution was perceived like a 4% sucrose solution when lactisole was added. However, it is significantly less efficient than gymnemic acid with acesulfame potassium, sucrose, glucose and sodium saccharin. Research found also that it has no effect on the perception of bitterness, sourness and saltiness. [1] According to a recent study, lactisole acts on a sweet taste receptor heteromer of the TAS1R3 sweet protein receptor in humans, but not on its rodent counterpart. [4]

As a food additive

The principal use of lactisole is in jellies, jams, and similar preserved fruit products containing large amounts of sugar. In these products, by suppressing sugar's sweetness, it allows fruit flavors to come through. In the United States, lactisole is designated as generally recognized as safe (GRAS) by the Flavor and Extract Manufacturers Association (Fema number: 3773) and approved for use in food as flavoring agent [5] up to 150 ppm. Currently, lactisole is manufactured and sold by Domino Sugar and its usage levels are between 50 and 150 ppm. [6] In the European Union lactisole is allowed to be used as a flavouring substance in foods, FL No. 16.041. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Aspartame</span> Artificial non-saccharide sweetener

Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. It is a methyl ester of the aspartic acid/phenylalanine dipeptide with brand names NutraSweet, Equal, and Canderel. Aspartame was approved by the US Food and Drug Administration (FDA) in 1974, and then again in 1981, after approval was revoked in 1980.

<span class="mw-page-title-main">Flavoring</span> Food additive used to change its aroma or taste

A flavoring, also known as flavor or flavorant, is a food additive used to improve the taste or smell of food. It changes the perceptual impression of food as determined primarily by the chemoreceptors of the gustatory and olfactory systems. Along with additives, other components like sugars determine the taste of food.

<span class="mw-page-title-main">Stevia</span> Sweetener and sugar substitute

Stevia is a sweet sugar substitute that is about 50 to 300 times sweeter than sugar. It is extracted from the leaves of Stevia rebaudiana, a plant native to areas of Paraguay and Brazil in the southern Amazon rainforest. The active compounds in stevia are steviol glycosides. Stevia is heat-stable, pH-stable, and not fermentable. Humans cannot metabolize the glycosides in stevia, and therefore it has zero calories. Its taste has a slower onset and longer duration than that of sugar, and at high concentrations some of its extracts may have an aftertaste described as licorice-like or bitter. Stevia is used in sugar- and calorie-reduced food and beverage products as an alternative for variants with sugar.

<span class="mw-page-title-main">Sugar substitute</span> Sugarless food additive intended to provide a sweet taste

A sugar substitute is a food additive that provides a sweetness like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie or low-calorie sweetener. Artificial sweeteners may be derived through manufacturing of plant extracts or processed by chemical synthesis. Sugar substitute products are commercially available in various forms, such as small pills, powders, and packets.

<span class="mw-page-title-main">Cyclamate</span> Chemical compound

Cyclamate is an artificial sweetener. It is 30–50 times sweeter than sucrose, making it the least potent of the commercially used artificial sweeteners. It is often used with other artificial sweeteners, especially saccharin; the mixture of 10 parts cyclamate to 1 part saccharin is common and masks the off-tastes of both sweeteners. It is less expensive than most sweeteners, including sucralose, and is stable under heating. Safety concerns led to it being banned in a few countries, though the European Union considers it safe.

<span class="mw-page-title-main">Neohesperidin dihydrochalcone</span> Chemical compound

Neohesperidin dihydrochalcone, sometimes abbreviated to neohesperidin DC or simply NHDC, is an artificial sweetener derived from citrus.

<span class="mw-page-title-main">Saccharin</span> Chemical compound

Saccharin, also called saccharine, benzosulfimide, or E954, or used in saccharin sodium or saccharin calcium forms, is a non-nutritive artificial sweetener. Saccharin is a sultam that is about 500 times sweeter than sucrose, but has a bitter or metallic aftertaste, especially at high concentrations. It is used to sweeten products, such as drinks, candies, baked goods, tobacco products, excipients, and for masking the bitter taste of some medicines. It appears as white crystals and is odorless.

<span class="mw-page-title-main">Neotame</span> Artificial sweetener

Neotame, also known by the brand name Newtame, is a non-caloric artificial sweetener and aspartame analog by NutraSweet. By mass, it is 7,000 to 13,000 times sweeter than sucrose. It has no notable off-flavors when compared to sucrose. It enhances original food flavors. It can be used alone, but is often mixed with other sweeteners to increase their individual sweetness and decrease their off-flavors. It is chemically somewhat more stable than aspartame. Its use can be cost effective in comparison to other sweeteners as smaller amounts of neotame are needed.

<span class="mw-page-title-main">Monellin</span> Protein

Monellin, a sweet protein, was discovered in 1969 in the fruit of the West African shrub known as serendipity berry ; it was first reported as a carbohydrate. The protein was named in 1972 after the Monell Chemical Senses Center in Philadelphia, U.S.A., where it was isolated and characterized.

<span class="mw-page-title-main">Sweetness</span> Basic taste

Sweetness is a basic taste most commonly perceived when eating foods rich in sugars. Sweet tastes are generally regarded as pleasurable. In addition to sugars like sucrose, many other chemical compounds are sweet, including aldehydes, ketones, and sugar alcohols. Some are sweet at very low concentrations, allowing their use as non-caloric sugar substitutes. Such non-sugar sweeteners include saccharin, aspartame, sucralose and stevia. Other compounds, such as miraculin, may alter perception of sweetness itself.

<i>Siraitia grosvenorii</i> Species of plant with a sweet gourd fruit extract

Siraitia grosvenorii, also known as monk fruit, monkfruit, luohan guo, or Swingle fruit, is a herbaceous perennial vine of the gourd family, Cucurbitaceae. It is native to southern China. The plant is cultivated for its fruit extract containing mogrosides. Mogroside extract has been used as a low-calorie sweetener for drinks and in traditional Chinese medicine. One mogroside, mogroside V, creates a sweetness sensation 250 times stronger than sucrose.

<span class="mw-page-title-main">Caramel color</span> Water soluble food coloring

Caramel color or caramel coloring is a water-soluble food coloring. It is made by heat treatment of carbohydrates (sugars), in general in the presence of acids, alkalis, or salts, in a process called caramelization. It is more fully oxidized than caramel candy, and has an odor of burnt sugar and a somewhat bitter taste. Its color ranges from pale yellow to amber to dark brown.

Fruit2O, formerly manufactured by Kraft, is a lightly flavored, non-carbonated water beverage introduced in 1999. Fruit2o was introduced to compete not only with the bottled water market but also with the soft drink market. Sunny Delight Beverages purchased the Veryfine Products line from Kraft in 2007.

<span class="mw-page-title-main">Curculin</span> Sweet protein with taste-modifying activity

Curculin or neoculin is a sweet protein that was discovered and isolated in 1990 from the fruit of Curculigo latifolia (Hypoxidaceae). Like miraculin, curculin exhibits taste-modifying activity; however, unlike miraculin, it also exhibits a sweet taste by itself. After consumption of curculin, water and sour solutions taste sweet.

<span class="mw-page-title-main">Pentadin</span>

Pentadin, a sweet-tasting protein, was discovered and isolated in 1989, in the fruit of oubli, a climbing shrub growing in some tropical countries of Africa. Sweet tasting proteins are often used in the treatment of diabetes, obesity, and other metabolic disorders that one can experience. These proteins are isolated from the pulp of various fruits, typically found in rain forests and are also used as low calorie sweeteners that can enhance and modify existing foods.

<span class="mw-page-title-main">Glutamate flavoring</span> Generic name for flavor-enhancing compounds based on glutamic acid and its salts

Glutamate flavoring is the generic name for flavor-enhancing compounds based on glutamic acid and its salts (glutamates). These compounds provide an umami (savory) taste to food.

<span class="mw-page-title-main">Taste</span> Sense of chemicals on the tongue

The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste (flavor). Taste is the perception stimulated when a substance in the mouth reacts chemically with taste receptor cells located on taste buds in the oral cavity, mostly on the tongue. Taste, along with the sense of smell and trigeminal nerve stimulation, determines flavors of food and other substances. Humans have taste receptors on taste buds and other areas, including the upper surface of the tongue and the epiglottis. The gustatory cortex is responsible for the perception of taste.

The following outline is provided as an overview of and topical guide to chocolate:

<span class="mw-page-title-main">Advantame</span> Chemical compound

Advantame is a non-caloric artificial sweetener and aspartame analog by Ajinomoto. By mass, it is about 20,000 times sweeter than sucrose and about 110 times sweeter than aspartame. It has no notable off-flavors when compared to sucrose and tastes sweet a bit longer than aspartame and is chemically more stable. It can be blended with many other natural and artificial sweeteners.

References

  1. 1 2 Kinghorn, A.D.; Compadre, C.M. (2001). Marcel Dekker (ed.). Alternative Sweeteners (Third Edition, Revised and Expanded ed.). New York. ISBN   0-8247-0437-1.{{cite book}}: CS1 maint: location missing publisher (link)
  2. T. Nakagita et al "Structural insights into the differences among lactisole derivatives in inhibitory mechanisms against the human sweet taste receptor" PLoS One. 2019; 14(3): e0213552
  3. Ivon Flament; Yvonne Bessière-Thomas (2002). "The individual constituents". Coffee flavor chemistry . John Wiley and Sons. p.  207. ISBN   0-471-72038-0.
  4. Jiang, P.; Cui, M; Zhao, B; Liu, Z; Snyder, LA; Benard, LM; Osman, R; Margolskee, RF; Max, M (2005). "Lactisole Interacts with the Transmembrane Domains of Human T1R3 to Inhibit Sweet Taste". Journal of Biological Chemistry. 280 (15): 15238–46. doi: 10.1074/jbc.M414287200 . PMID   15668251.
  5. JECFA "Specifications for Flavourings"
  6. Sugar sans sweetness - lactisole. Prepared Foods, May, 1995 by Fran LaBell Archived 2009-01-22 at the Wayback Machine
  7. 2002/113/EC: Commission Decision of 23 January 2002 amending Commission Decision 1999/217/EC as regards the register of flavouring substances used in or on foodstuffs