List of dualities

Last updated

Mathematics

In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A.

Contents

Philosophy and religion

Engineering

Physics

Economics and finance

See also

Related Research Articles

<span class="mw-page-title-main">Dynamical system</span> Mathematical model of the time dependence of a point in space

In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a set, without the need of a smooth space-time structure defined on it.

<span class="mw-page-title-main">Group theory</span> Branch of mathematics that studies the properties of groups

In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

<span class="mw-page-title-main">Hyperbolic geometry</span> Non-Euclidean geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice.

In mathematics, the Weil conjectures were highly influential proposals by André Weil. They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.

<span class="mw-page-title-main">Representation of a Lie group</span> Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

<span class="mw-page-title-main">Wightman axioms</span> Axiomatization of quantum field theory

In mathematical physics, the Wightman axioms, named after Arthur Wightman, are an attempt at a mathematically rigorous formulation of quantum field theory. Arthur Wightman formulated the axioms in the early 1950s, but they were first published only in 1964 after Haag–Ruelle scattering theory affirmed their significance.

In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces, the sequence of Betti numbers is 0 from some point onward, and they are all finite.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. In other cases the dual of the dual – the double dual or bidual – is not necessarily identical to the original. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.

<span class="mw-page-title-main">Symmetry in mathematics</span>

Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations.

<span class="mw-page-title-main">Particle physics and representation theory</span> Physics-mathematics connection

There is a natural connection between particle physics and representation theory, as first noted in the 1930s by Eugene Wigner. It links the properties of elementary particles to the structure of Lie groups and Lie algebras. According to this connection, the different quantum states of an elementary particle give rise to an irreducible representation of the Poincaré group. Moreover, the properties of the various particles, including their spectra, can be related to representations of Lie algebras, corresponding to "approximate symmetries" of the universe.

Foster's reactance theorem is an important theorem in the fields of electrical network analysis and synthesis. The theorem states that the reactance of a passive, lossless two-terminal (one-port) network always strictly monotonically increases with frequency. It is easily seen that the reactances of inductors and capacitors individually increase with frequency and from that basis a proof for passive lossless networks generally can be constructed. The proof of the theorem was presented by Ronald Martin Foster in 1924, although the principle had been published earlier by Foster's colleagues at American Telephone & Telegraph.

In mathematics, Verdier duality is a cohomological duality in algebraic topology that generalizes Poincaré duality for manifolds. Verdier duality was introduced in 1965 by Jean-Louis Verdier as an analog for locally compact topological spaces of Alexander Grothendieck's theory of Poincaré duality in étale cohomology for schemes in algebraic geometry. It is thus one instance of Grothendieck's six operations formalism.

The circuit topology of an electronic circuit is the form taken by the network of interconnections of the circuit components. Different specific values or ratings of the components are regarded as being the same topology. Topology is not concerned with the physical layout of components in a circuit, nor with their positions on a circuit diagram; similarly to the mathematical concept of topology, it is only concerned with what connections exist between the components. There may be numerous physical layouts and circuit diagrams that all amount to the same topology.

<span class="mw-page-title-main">Abstract algebra</span> Branch of mathematics

In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are sets with specific operations acting on their elements. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in pedagogy.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.

<span class="mw-page-title-main">Optic equation</span> Equation of the form 1/a + 1/b = 1/c

In number theory, the optic equation is an equation that requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c:

<span class="mw-page-title-main">Parallel (operator)</span> Mathematical operation modeling parallel resistors

The parallel operator is a mathematical function which is used as a shorthand in electrical engineering, but is also used in kinetics, fluid mechanics and financial mathematics. The name parallel comes from the use of the operator computing the combined resistance of resistors in parallel.

References

  1. 1 2 Ellerman, David Patterson (1995-03-21). "Chapter 12: Parallel Addition, Series-Parallel Duality, and Financial Mathematics". Intellectual Trespassing as a Way of Life: Essays in Philosophy, Economics, and Mathematics (PDF). G - Reference, Information and Interdisciplinary Subjects Series (illustrated ed.). Rowman & Littlefield Publishers, Inc. pp. 237–268. ISBN   0-8476-7932-2. Archived (PDF) from the original on 2016-03-05. Retrieved 2019-08-09. […] When resistors with resistance a and b are placed in series, their compound resistance is the usual sum (hereafter the series sum ) of the resistances a + b. If the resistances are placed in parallel, their compound resistance is the parallel sum of the resistances, which is denoted by the full colon […]{{cite book}}: |work= ignored (help) (271 pages)
  2. 1 2 Ellerman, David Patterson (May 2004) [1995-03-21]. Introduction to Series-Parallel Duality (PDF). University of California at Riverside. CiteSeerX   10.1.1.90.3666 . Archived from the original on 2019-08-10. Retrieved 2019-08-09. The parallel sum of two positive real numbers x:y = [(1/x) + (1/y)]−1 arises in electrical circuit theory as the resistance resulting from hooking two resistances x and y in parallel. There is a duality between the usual (series) sum and the parallel sum. […] (24 pages)