List of oncogenic bacteria

Last updated

Bacteria involved in causing and treating cancers Bacteria involved in causing and treating cancers.svg
Bacteria involved in causing and treating cancers

This is a list of bacteria that have been identified as promoting or causing:

Contents

Species or genera

Species or generaPossibly associated cancersRef
Bacteroides fragilis Colon cancer. [1]
Borrelia burgdorferi MALT lymphoma. [2]

Campylobacter jejuni

Immunoproliferative small intestinal disease (IPSID), which is rare a type of MALT lymphoma. [2]
Chlamydia pneumonia Lung MALT lymphoma. [2]
Chlamydia trachomatis (chlamydia) Cervical cancer. [2]
Chlamydophila psittaci Ocular/adnexal lymphoma (forms of eye cancer). [2]
Clostridium sspColon cancer. [2]
Helicobacter bilis Biliary cancers (such as gallbladder and biliary tract cancers). [2]
Helicobacter bizzozeronii Gastric MALT lymphoma. [2]
Helicobacter felis Gastric MALT lymphoma. [2]
Helicobacter heilmannii Marginal zone B-cell lymphoma of the stomach. [2] [3]
Helicobacter hepaticus Biliary cancer. [2]
Helicobacter pylori Stomach cancer, Marginal zone B-cell lymphoma of the stomach, and bile duct cancer [2] [4] [5]
Helicobacter salomonis Gastric MALT lymphoma. [2]
Helicobacter suis Gastric MALT lymphoma. [2]
Mycoplasma sppStomach, colon, ovarian, and lung cancers (particularly M. fermentans, M. penetrans, M. hyorhinis). [2]
Neisseria gonorrhoeae (gonorrhea) Bladder cancer and possibly prostate cancer. [2]
Cutibacterium acnes Bladder and prostate cancer. [2]
Salmonella enterica serovar ParatyphiBiliary cancer. [6] [7] [2]
Salmonella enterica serovar TyphimuriumBiliary cancer. [8] [2]
Treponema pallidum (syphilis)Bladder cancer and possibly prostate cancer. [2]

See also

Related Research Articles

Peptic ulcer disease is a break in the inner lining of the stomach, the first part of the small intestine, or sometimes the lower esophagus. An ulcer in the stomach is called a gastric ulcer, while one in the first part of the intestines is a duodenal ulcer. The most common symptoms of a duodenal ulcer are waking at night with upper abdominal pain, and upper abdominal pain that improves with eating. With a gastric ulcer, the pain may worsen with eating. The pain is often described as a burning or dull ache. Other symptoms include belching, vomiting, weight loss, or poor appetite. About a third of older people with peptic ulcers have no symptoms. Complications may include bleeding, perforation, and blockage of the stomach. Bleeding occurs in as many as 15% of cases.

<i>Helicobacter pylori</i> Species of bacteria

Helicobacter pylori, previously known as Campylobacter pylori, is a gram-negative, flagellated, helical bacterium. Mutants can have a rod or curved rod shape, and these are less effective. Its helical body is thought to have evolved in order to penetrate the mucous lining of the stomach, helped by its flagella, and thereby establish infection. The bacterium was first identified as the causal agent of gastric ulcers in 1983 by the Australian doctors Barry Marshall and Robin Warren.

<i>Helicobacter</i> Genus of bacteria

Helicobacter is a genus of gram-negative bacteria possessing a characteristic helical shape. They were initially considered to be members of the genus Campylobacter, but in 1989, Goodwin et al. published sufficient reasons to justify the new genus name Helicobacter. The genus Helicobacter contains about 35 species.

<span class="mw-page-title-main">Stomach cancer</span> Cancerous tumor originating in the stomach lining

Stomach cancer, also known as gastric cancer, is a cancer that develops from the lining of the stomach. Most cases of stomach cancers are gastric carcinomas, which can be divided into a number of subtypes, including gastric adenocarcinomas. Lymphomas and mesenchymal tumors may also develop in the stomach. Early symptoms may include heartburn, upper abdominal pain, nausea, and loss of appetite. Later signs and symptoms may include weight loss, yellowing of the skin and whites of the eyes, vomiting, difficulty swallowing, and blood in the stool, among others. The cancer may spread from the stomach to other parts of the body, particularly the liver, lungs, bones, lining of the abdomen, and lymph nodes.

<span class="mw-page-title-main">Gastritis</span> Stomach disease that is an inflammation of the lining of the stomach

Gastritis is inflammation of the lining of the stomach. It may occur as a short episode or may be of a long duration. There may be no symptoms but, when symptoms are present, the most common is upper abdominal pain. Other possible symptoms include nausea and vomiting, bloating, loss of appetite and heartburn. Complications may include stomach bleeding, stomach ulcers, and stomach tumors. When due to autoimmune problems, low red blood cells due to not enough vitamin B12 may occur, a condition known as pernicious anemia.

<span class="mw-page-title-main">Achlorhydria</span> Medical condition

Achlorhydria and hypochlorhydria refer to states where the production of hydrochloric acid in gastric secretions of the stomach and other digestive organs is absent or low, respectively. It is associated with various other medical problems.

<span class="mw-page-title-main">Atrophic gastritis</span> Medical condition

Atrophic gastritis is a process of chronic inflammation of the gastric mucosa of the stomach, leading to a loss of gastric glandular cells and their eventual replacement by intestinal and fibrous tissues. As a result, the stomach's secretion of essential substances such as hydrochloric acid, pepsin, and intrinsic factor is impaired, leading to digestive problems. The most common are vitamin B12 deficiency possibly leading to pernicious anemia; and malabsorption of iron, leading to iron deficiency anaemia. It can be caused by persistent infection with Helicobacter pylori, or can be autoimmune in origin. Those with autoimmune atrophic gastritis (Type A gastritis) are statistically more likely to develop gastric carcinoma, Hashimoto's thyroiditis, and achlorhydria.

<span class="mw-page-title-main">MALT lymphoma</span> Medical condition

MALT lymphoma is a form of lymphoma involving the mucosa-associated lymphoid tissue (MALT), frequently of the stomach, but virtually any mucosal site can be affected. It is a cancer originating from B cells in the marginal zone of the MALT, and is also called extranodal marginal zone B cell lymphoma.

<span class="mw-page-title-main">Martin J. Blaser</span> American academic

Martin J. Blaser is the director of the Center for Advanced Biotechnology and Medicine at Rutgers (NJ) Biomedical and Health Sciences and the Henry Rutgers Chair of the Human Microbiome and Professor of Medicine and Pathology and Laboratory Medicine at the Rutgers Robert Wood Johnson Medical School in New Jersey.

Timeline of peptic ulcer disease and <i>Helicobacter pylori</i>

This is a timeline of the events relating to the discovery that peptic ulcer disease and some cancers are caused by H. pylori. In 2005, Barry Marshall and Robin Warren were awarded the Nobel Prize in Physiology or Medicine for their discovery that peptic ulcer disease (PUD) was primarily caused by Helicobacter pylori, a bacterium with affinity for acidic environments, such as the stomach. As a result, PUD that is associated with H. pylori is currently treated with antibiotics used to eradicate the infection. For decades prior to their discovery, it was widely believed that PUD was caused by excess acid in the stomach. During this time, acid control was the primary method of treatment for PUD, to only partial success. Among other effects, it is now known that acid suppression alters the stomach milieu to make it less amenable to H. pylori infection.

<span class="mw-page-title-main">Carcinogenic bacteria</span>

Cancer bacteria are bacteria infectious organisms that are known or suspected to cause cancer. While cancer-associated bacteria have long been considered to be opportunistic, there is some evidence that bacteria may be directly carcinogenic. The strongest evidence to date involves the bacterium H. pylori and its role in gastric cancer.

<span class="mw-page-title-main">Infectious causes of cancer</span>

Estimates place the worldwide risk of cancers from infectious causes at 16.1%. Viral infections are risk factors for cervical cancer, 80% of liver cancers, and 15–20% of the other cancers. This proportion varies in different regions of the world from a high of 32.7% in Sub-Saharan Africa to 3.3% in Australia and New Zealand.

Helicobacter pylori virulence factor CagA is a 120–145kDa protein encoded on the 40kb cag pathogenicity island (PAI). H. pylori strains can be divided into CagA positive or negative strains. Approximately 60% of H. pylori strains isolated in Western countries carry cag PAI, whereas almost all of the East Asian isolates are cag PAI-positive.

Helicobacter felis is a bacterial species in the Helicobacteraceae family, Campylobacterales order, Helicobacter genus. This bacterium is Gram-negative, microaerophilic, urease-positive, and spiral-shaped. Its type strain is CS1T. It can be pathogenic.

Helicobacter salomonis is a species within the Helicobacter genus of Gram-negative bacteria. Helicobacter pylori is by far the best known Helicobacter species primarily because humans infected with it may develop gastrointestinal tract diseases such as stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers of the nonlymphoma type, and various subtypes of extranodal marginal zone lymphomass, e.g. those of the stomach, small intestines, large intestines, and rectumn. H. pylori is also associated with the development of bile duct cancer and has been associated with a wide range of other diseases, although its role in the development of many of these other diseases requires further study. Humans infected with H. salomonis may develop some of the same gastrointestinal diseases viz., stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers that are not lymphomas, and extranodal marginal B cell lymphomas of the stomach. Other non-H. pylori Helicobacter species that are known to be associated with these gastrointestinal diseases are Helicobacter bizzozeronii, Helicobacter suis, Helicobacter felis, and Helicobacter heilmannii s.s. Because of their disease associations, these four Helicobacter species plus H. salomonis are often group together and termed Helicobacter heilmannii sensu lato.

Membrane vesicle trafficking in eukaryotic animal cells involves movement of biochemical signal molecules from synthesis-and-packaging locations in the Golgi body to specific release locations on the inside of the plasma membrane of the secretory cell. It takes place in the form of Golgi membrane-bound micro-sized vesicles, termed membrane vesicles (MVs).

Helicobacter heilmannii sensu lato refers to a group of bacterial species within the Helicobacter genus. The Helicobacter genus consists of at least 40 species of spiral-shaped flagellated, Gram-negative bacteria of which the by far most prominent and well-known species is Helicobacter pylori. H. pylori is associated with the development of gastrointestinal tract diseases such as stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers that are not lymphomas, and various subtypes of extranodal marginal zone lymphomas, e.g. those of the stomach, small intestines, large intestines, and rectumn. H. pylori has also been associated with the development of bile duct cancer and has been associated with a wide range of other diseases although its role in the development of many of these other diseases requires further study.

Helicobacter bizzozeronii is a species within the Helicobacter genus of Gram-negative bacteria. Helicobacter pylori is by far the best known Helicobacter species, primarily because humans infected with it may develop gastrointestinal tract diseases such as stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers of the nonlymphoma type, and various subtypes of extranodal marginal zone lymphomass, e.g. those of the stomach, small intestines, large intestines, and rectumn. H. pylori is also associated with the development of bile duct cancer and has been associated with a wide range of other diseases although its role in the development of many of these other diseases requires further study. Humans infected with H. bizzozeronii are prone to develop some of the same gastrointestinal diseases viz., stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers that are not lymphomas, and extranodal marginal B cell lymphomas of the stomach. Other non-H. pylori Helicobacter species that are known to be associated with these gastrointestinal diseases are Helicobacter felis, Helicobacter salomonis, Helicobacter suis, and Helicobacter heilmannii s.s. Because of their disease associations, these four Helicobacter species plus H. bizzozeronii are often grouped together and termed Helicobacter heilmannii sensu lato.

Helicobacter suis is a species within the Helicobacter genus of Gram-negative bacteria. Helicobacter pylori is by far the best known Helicobacter species, primarily because humans infected with it may develop gastrointestinal tract diseases such as stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers of the nonlymphoma type, and various subtypes of extranodal marginal zone lymphomass, e.g. those of the stomach, small intestines, large intestines, and rectumn. H. pylori is also associated with the development of bile duct cancer and has been associated with a wide range of other diseases although its role in the development of many of these other diseases requires further study. Humans infected with H. suis may develop some of the same gastrointestinal diseases - stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers that are not lymphomas, and extranodal marginal B cell lymphomas of the stomach. Other non-H. pylori Helicobacter species that are known to be associated with these gastrointestinal diseases are Helicobacter bizzozeronii, Helicobacter salomonis, Helicobacter felis, and Helicobacter heilmannii s.s. Because of their disease associations, these four Helicobacter species plus H. suis are often group together and termed Helicobacter heilmannii sensu lato.

Helicobacter heilmannii s.s. is a species within the Helicobacter genus of Gram negative bacteria. Helicobacter pylori is by far the best known Helicobacter species primarily because humans infected with it may develop gastrointestinal tract diseases such as stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers of the non-lymphoma type, and various subtypes of extranodal marginal zone lymphomass, e.g. those of the stomach, small intestines, large intestines, and rectumn. H. pylori is also associated with the development of bile duct cancer and has been associated with a wide range of other diseases although its role in the development of many of these other diseases requires further study. Humans infected with H. heilmannii s.s. may develop some of the same gastrointestinal diseases viz., stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers that are not lymphomas, and extranodal marginal B cell lymphomas of the stomach. Other non-H. pylori Helicobacter species that are known to be associated with these gastrointestinal diseases are Helicobacter bizzozeronii, Helicobacter suis, Helicobacter felis, and Helicobacter salomonis. Because of their disease associations, these four Helicobacter species plus H. heilmannii s.s. are often group together and termed Helicobacter heilmannii sensu lato.

References

  1. Sinkovics, Joseph (2011). "Molecular biology of oncogenic inflammatory processes. I. Non-oncogenic and oncogenic pathogens, intrinsic inflammatory reactions without pathogens, and microRNA/DNA interactions (Review)". International Journal of Oncology. 40 (2): 305–49. doi: 10.3892/ijo.2011.1248 . ISSN   1019-6439. PMID   22076306.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Chang, A. H.; Parsonnet, J. (2010). "Role of Bacteria in Oncogenesis". Clinical Microbiology Reviews. 23 (4): 837–857. doi:10.1128/CMR.00012-10. ISSN   0893-8512. PMC   2952975 . PMID   20930075.
  3. Schreuder MI, van den Brand M, Hebeda KM, Groenen PJ, van Krieken JH, Scheijen B (December 2017). "Novel developments in the pathogenesis and diagnosis of extranodal marginal zone lymphoma". Journal of Hematopathology. 10 (3–4): 91–107. doi:10.1007/s12308-017-0302-2. PMC   5712330 . PMID   29225710.
  4. Traulsen, Jan; Zagami, Claudia; Daddi, Alice Anna; Boccellato, Francesco (2021-03-01). "Molecular modelling of the gastric barrier response, from infection to carcinogenesis". Best Practice & Research Clinical Gastroenterology. 50–51: 101737. doi:10.1016/j.bpg.2021.101737. ISSN   1521-6918. PMID   33975688. S2CID   233900318.
  5. Bravo D, Hoare A, Soto C, Valenzuela MA, Quest AF (July 2018). "Helicobacter pylori in human health and disease: Mechanisms for local gastric and systemic effects". World Journal of Gastroenterology. 24 (28): 3071–3089. doi: 10.3748/wjg.v24.i28.3071 . PMC   6064966 . PMID   30065554.
  6. Sepe, Ludovico P.; Hartl, Kimberly; Iftekhar, Amina; Berger, Hilmar; Kumar, Naveen; Goosmann, Christian; Chopra, Sascha; Schmidt, Sven Christian; Gurumurthy, Rajendra Kumar; Meyer, Thomas F.; Boccellato, Francesco (2020-09-22). McClane, Bruce A. (ed.). "Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells". mBio. 11 (5): e01911–20, /mbio/11/5/mBio.01911–20.atom. doi:10.1128/mBio.01911-20. ISSN   2150-7511. PMC   7512552 . PMID   32963006.
  7. Boccellato, Francesco; Meyer, Thomas F. (June 2015). "Bacteria Moving into Focus of Human Cancer". Cell Host & Microbe. 17 (6): 728–730. doi: 10.1016/j.chom.2015.05.016 . ISSN   1931-3128. PMID   26067598.
  8. Scanu, Tiziana; Spaapen, Robbert M.; Bakker, Jeroen M.; Pratap, Chandra Bhan; Wu, Lin-en; Hofland, Ingrid; Broeks, Annegien; Shukla, Vijay Kumar; Kumar, Mohan; Janssen, Hans; Song, Ji-Ying (June 2015). "Salmonella Manipulation of Host Signaling Pathways Provokes Cellular Transformation Associated with Gallbladder Carcinoma". Cell Host & Microbe. 17 (6): 763–774. doi: 10.1016/j.chom.2015.05.002 . PMID   26028364.

Further reading