Ma Butte Formation

Last updated
Ma Butte Formation
Stratigraphic range: Early Cretaceous (Albian)
O
S
D
C
P
T
J
K
Pg
N
Type Geological formation
Unit of Blairmore Group
Underlies Crowsnest Formation
Overlies Beaver Mines Formation
Thicknessup to 132 metres (430 ft)
Lithology
Primary Sandstone, siltstone, mudstone
Other Conglomerate, bentonite, tuff
Location
RegionFlag of Alberta.svg  Alberta
CountryFlag of Canada (Pantone).svg  Canada
Type section
Named forMa Butte
Named byJ.R. McLean
Year defined1980 [1]

The Ma Butte Formation is a stratigraphic unit of Early Cretaceous (Albian) age in the Western Canada Sedimentary Basin. [2] It was named for Ma Butte, a mountain north of Coleman, Alberta, by J.R. McLean in 1980. [1] It is present in the foothills of southwestern Alberta and it contains plant fossils. [1] [3]

Contents

Stratigraphy and lithology

The Ma Butte Formation is a unit of the Blairmore Group. It consists primarily of fine-grained sandstones interbedded with siltstones and mudstones. Some coarser grained sandstones and conglomerate beds are also present. Beds of bentonite and tuff increase upward toward the contact with the overlying Crowsnest Formation. The sandstones of the Ma Butte Formation are quartzose, in contrast with the feldspathic sandstones of the underlying Beaver Mines Formation. [1] [3]

Distribution and thickness

The Ma Butte Formation is present in the southern foothills of Alberta as far north as the Red Deer River. It has a maximum reported thickness of 132 metres (430 ft) near the Bow River. [3]

Depositional environment and paleontology

The sediments of the Ma Butte Formation were derived from erosion of mountain ranges to the west, transported eastward by river systems, and deposited in a variety of floodplain environments. They include angiosperm (flowering plant) fossils, in contrast to the underlying Beaver Mines Formation. This marks the first appearance of angiosperms in this area. [1]

Relationship to other units

The Ma Butte Formation is also known as the Mill Creek Formation. It disconformably overlies the Beaver Mines Formation. It is conformably overlain by the Crowsnest Formation in the south and the contact between the two is gradational. It is disconformably overlain by the Blackstone Formation in the north, and it is correlative with the Bow Island Formation to the east. [3]

Related Research Articles

Scollard Formation

The Scollard Formation is an Upper Cretaceous to lower Palaeocene stratigraphic unit of the Western Canada Sedimentary Basin in southwestern Alberta. Its deposition spanned the time interval from latest Cretaceous to early Paleocene, and it includes sediments that were deposited before, during, and after the Cretaceous-Paleogene (K-Pg) extinction event. It is significant for its fossil record, and it includes the economically important coal deposits of the Ardley coal zone.

Crowsnest Formation

The Crowsnest Formation, also called the Crowsnest Volcanics, is a geological formation in southwestern Alberta, Canada, on the southwestern margin of the Western Canada Sedimentary Basin. It was named for the Crowsnest Pass near Coleman, Alberta. The formation consists mostly of pyroclastic rocks that were laid down in a series of explosive eruptions about 100 million years ago during the Albian stage of the Early Cretaceous epoch. It contains unusual minerals such as melanite and analcime.

Cadomin Formation

The Cadomin Formation is a stratigraphic unit of Early Cretaceous age in the western part of the Western Canada Sedimentary Basin. It is extends from southeastern British Columbia through western Alberta to northeastern British Columbia, and it contains significant reservoirs of natural gas in some areas. It was named after the mining town of Cadomin, which is an acronym of "Canadian Dominion Mining".

Gething Formation

Gething Formation is a stratigraphic unit of Lower Cretaceous (Aptian) age in the Western Canada Sedimentary Basin. It is present in northeastern British Columbia and western Alberta, and includes economically important coal deposits.

Cardium Formation

The Cardium Formation is a stratigraphic unit of Late Cretaceous age in the Western Canada Sedimentary Basin. It takes the name from the fossilized Cockle (Cardiidae) shells that it contains, and it was first described along the Bow River banks by James Hector in 1895. It is present throughout western Alberta and in northeastern British Columbia, and it is a major source of petroleum and natural gas.

Bullhead Group is a stratigraphic unit of Lower Cretaceous age in the Western Canada Sedimentary Basin of northeastern British Columbia and western Alberta. It was first defined by F.H. McLearn in 1918 as the Bullhead Mountain Formation, but later was upgraded to group status. It consists of the Cadomin and Gething Formations, although some early workers included the Bluesky Formation and others in the group.

The Belloy Formation is a stratigraphical unit of Permian age in the Western Canadian Sedimentary Basin.

Palliser Formation

The Palliser Formation is a stratigraphic unit of Late Devonian (Famennian) age in the Western Canada Sedimentary Basin. It is a thick sequence of limestone and dolomitic limestone that is present in the Canadian Rockies and foothills of western Alberta. Tall cliffs formed of the Palliser Formation can be seen throughout Banff and Jasper National Parks.

Mist Mountain Formation

The Mist Mountain Formation is a geologic formation of latest Jurassic to earliest Cretaceous age in the Western Canada Sedimentary Basin that is present in the southern and central Canadian Rockies. It was named for outcrops along the western spur of Mist Mountain in Alberta by D.W. Gibson in 1979. The Mist Mountain Formation contains economically important coal seams that have been mined in southeastern British Columbia and southwestern Alberta.

Edmonton Group

The Edmonton Group is a Late Cretaceous to early Paleocene stratigraphic unit of the Western Canada Sedimentary Basin in the central Alberta plains. It was first described as the Edmonton Formation by Joseph Burr Tyrrell in 1887 based on outcrops along the North Saskatchewan River in and near the city of Edmonton. E.J.W. Irish later elevated the formation to group status and it was subdivided into four separate formations. In ascending order, they are the Horseshoe Canyon, Whitemud, Battle and Scollard Formations. The Cretaceous-Paleogene boundary occurs within the Scollard Formation, based on dinosaurian and microfloral evidence, as well as the presence of the terminal Cretaceous iridium anomaly.

The Ravenscrag Formation is a stratigraphic unit of early Paleocene age in the Western Canada Sedimentary Basin. It was named for the settlement of Ravenscrag, Saskatchewan, and was first described from outcrops at Ravenscrag Butte near the Frenchman River by N.B. Davis in 1918.

Morrissey Formation

The Morrissey Formation is a stratigraphic unit of Late Jurassic (Portlandian) age in the Western Canada Sedimentary Basin. It is named for outcrops on Morrissey Ridge, 16 kilometres (10 mi) southeast of Fernie, British Columbia, and is present in southeastern British Columbia and southwestern Alberta.

The Elk Formation is a stratigraphic unit of the Western Canada Sedimentary Basin that is present in southeastern British Columbia and southwestern Alberta. It is probably of Early Cretaceous age, but in some areas its strata could be as old as Late Jurassic. It includes minor thin coal beds and was named for outcrops near the now-abandoned Elk River coal mine east of Fernie, British Columbia.

The Blairmore Group, originally named the Blairmore Formation, is a geologic unit of Early Cretaceous age in the Western Canada Sedimentary Basin that is present in southwestern Alberta and southeastern British Columbia. It is subdivided into a series of formations, most of which contain plant fossils. In some areas it contains significant reservoirs of natural gas.

Monach Formation

The Monach Formation is a geologic formation of Early Cretaceous (Valanginian) age in the Western Canada Sedimentary Basin that consists primarily of sandstone. It is present in the northern foothills of the Canadian Rockies and the adjacent plains in northeastern British Columbia.

Monteith Formation

The Monteith Formation is a geologic formation of Early Cretaceous (Valanginian) age in the Western Canada Sedimentary Basin that consists primarily of sandstone. It is present in the northern foothills of the Canadian Rockies and the adjacent plains in northeastern British Columbia and west-central Alberta.

The Beaver Mines Formation is a stratigraphic unit of Early Cretaceous (Albian) age in the Western Canada Sedimentary Basin that is present in southwestern Alberta and southeastern British Columbia, Canada. It was established by G.B. Mellon in 1967 who named it for the hamlet of Beaver Mines, Alberta. It contains a variety of plant fossils.

The Kootenay Group, originally called the Kootenay Formation, is a geologic unit of latest Jurassic to earliest Cretaceous age in the Western Canada Sedimentary Basin that is present in the southern and central Canadian Rockies and foothills. It includes economically important deposits of high-rank bituminous and semi-anthracite coal, as well as plant fossils and dinosaur trackways.

Luscar Group

The Luscar Group is a geologic unit of Early Cretaceous age in the Western Canada Sedimentary Basin that is present in the foothills of southwestern Alberta. It is subdivided into a series of formations, some of which contain economically significant coal deposits that have been mined near Cadomin and Luscar. Coal mining in those areas began in the early 1900s and continues near Luscar as of 2016.

The Gladstone Formation is a stratigraphic unit of Early Cretaceous (Aptian) age in the Western Canada Sedimentary Basin. It is present in the foothills of southwestern Alberta and is named for outcrops along Gladstone Creek, a tributary of the Castle River south of the Crowsnest Pass.

References

  1. 1 2 3 4 5 McLean, 1980. Lithostratigraphy of the Lower Cretaceous coal-bearing sequence, foothills of Alberta. Geological Survey of Canada, Paper 80-29.
  2. Canadian Society of Petroleum Geologists and Alberta Geological Survey (1994). "The Geological Atlas of the Western Canada Sedimentary Basin, Chapter 19: Cretaceous Mannville Group of the Western Canada Sedimentary Basin". compilers : Mossop, G.D. and Shetsen, I. Archived from the original on 2016-07-01. Retrieved 2016-06-20.
  3. 1 2 3 4 Glass, D.J. (editor) 1997. Lexicon of Canadian Stratigraphy, vol. 4, Western Canada including eastern British Columbia, Alberta, Saskatchewan and southern Manitoba. Canadian Society of Petroleum Geologists, Calgary, 1423 p. on CD-ROM. ISBN   0-920230-23-7.