In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. [1] In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.
Given a graph G = (V, E), a matchingM in G is a set of pairwise non-adjacent edges, none of which are loops; that is, no two edges share common vertices.
A vertex is matched (or saturated) if it is an endpoint of one of the edges in the matching. Otherwise the vertex is unmatched (or unsaturated).
A maximal matching is a matching M of a graph G that is not a subset of any other matching. A matching M of a graph G is maximal if every edge in G has a non-empty intersection with at least one edge in M. The following figure shows examples of maximal matchings (red) in three graphs.
A maximum matching (also known as maximum-cardinality matching [2] ) is a matching that contains the largest possible number of edges. There may be many maximum matchings. The matching number of a graph G is the size of a maximum matching. Every maximum matching is maximal, but not every maximal matching is a maximum matching. The following figure shows examples of maximum matchings in the same three graphs.
A perfect matching is a matching that matches all vertices of the graph. That is, a matching is perfect if every vertex of the graph is incident to an edge of the matching. A matching is perfect if . Every perfect matching is maximum and hence maximal. In some literature, the term complete matching is used. In the above figure, only part (b) shows a perfect matching. A perfect matching is also a minimum-size edge cover. Thus, the size of a maximum matching is no larger than the size of a minimum edge cover: . A graph can only contain a perfect matching when the graph has an even number of vertices.
A near-perfect matching is one in which exactly one vertex is unmatched. Clearly, a graph can only contain a near-perfect matching when the graph has an odd number of vertices, and near-perfect matchings are maximum matchings. In the above figure, part (c) shows a near-perfect matching. If every vertex is unmatched by some near-perfect matching, then the graph is called factor-critical.
Given a matching M, an alternating path is a path that begins with an unmatched vertex [3] and whose edges belong alternately to the matching and not to the matching. An augmenting path is an alternating path that starts from and ends on free (unmatched) vertices. Berge's lemma states that a matching M is maximum if and only if there is no augmenting path with respect to M.
An induced matching is a matching that is the edge set of an induced subgraph. [4]
In any graph without isolated vertices, the sum of the matching number and the edge covering number equals the number of vertices. [5] If there is a perfect matching, then both the matching number and the edge cover number are |V | / 2.
If A and B are two maximal matchings, then |A| ≤ 2|B| and |B| ≤ 2|A|. To see this, observe that each edge in B \ A can be adjacent to at most two edges in A \ B because A is a matching; moreover each edge in A \ B is adjacent to an edge in B \ A by maximality of B, hence
Further we deduce that
In particular, this shows that any maximal matching is a 2-approximation of a maximum matching and also a 2-approximation of a minimum maximal matching. This inequality is tight: for example, if G is a path with 3 edges and 4 vertices, the size of a minimum maximal matching is 1 and the size of a maximum matching is 2.
A spectral characterization of the matching number of a graph is given by Hassani Monfared and Mallik as follows: Let be a graph on vertices, and be distinct nonzero purely imaginary numbers where . Then the matching number of is if and only if (a) there is a real skew-symmetric matrix with graph and eigenvalues and zeros, and (b) all real skew-symmetric matrices with graph have at most nonzero eigenvalues. [6] Note that the (simple) graph of a real symmetric or skew-symmetric matrix of order has vertices and edges given by the nonozero off-diagonal entries of .
A generating function of the number of k-edge matchings in a graph is called a matching polynomial. Let G be a graph and mk be the number of k-edge matchings. One matching polynomial of G is
Another definition gives the matching polynomial as
where n is the number of vertices in the graph. Each type has its uses; for more information see the article on matching polynomials.
A fundamental problem in combinatorial optimization is finding a maximum matching. This problem has various algorithms for different classes of graphs.
In an unweighted bipartite graph, the optimization problem is to find a maximum cardinality matching. The problem is solved by the Hopcroft-Karp algorithm in time O(√VE) time, and there are more efficient randomized algorithms, approximation algorithms, and algorithms for special classes of graphs such as bipartite planar graphs, as described in the main article.
In a weighted bipartite graph, the optimization problem is to find a maximum-weight matching; a dual problem is to find a minimum-weight matching. This problem is often called maximum weighted bipartite matching, or the assignment problem . The Hungarian algorithm solves the assignment problem and it was one of the beginnings of combinatorial optimization algorithms. It uses a modified shortest path search in the augmenting path algorithm. If the Bellman–Ford algorithm is used for this step, the running time of the Hungarian algorithm becomes , or the edge cost can be shifted with a potential to achieve running time with the Dijkstra algorithm and Fibonacci heap. [7]
In a non-bipartite weighted graph, the problem of maximum weight matching can be solved in time using Edmonds' blossom algorithm.
A maximal matching can be found with a simple greedy algorithm. A maximum matching is also a maximal matching, and hence it is possible to find a largest maximal matching in polynomial time. However, no polynomial-time algorithm is known for finding a minimum maximal matching, that is, a maximal matching that contains the smallest possible number of edges.
A maximal matching with k edges is an edge dominating set with k edges. Conversely, if we are given a minimum edge dominating set with k edges, we can construct a maximal matching with k edges in polynomial time. Therefore, the problem of finding a minimum maximal matching is essentially equal to the problem of finding a minimum edge dominating set. [8] Both of these two optimization problems are known to be NP-hard; the decision versions of these problems are classical examples of NP-complete problems. [9] Both problems can be approximated within factor 2 in polynomial time: simply find an arbitrary maximal matching M. [10]
The number of matchings in a graph is known as the Hosoya index of the graph. It is #P-complete to compute this quantity, even for bipartite graphs. [11] It is also #P-complete to count perfect matchings, even in bipartite graphs, because computing the permanent of an arbitrary 0–1 matrix (another #P-complete problem) is the same as computing the number of perfect matchings in the bipartite graph having the given matrix as its biadjacency matrix. However, there exists a fully polynomial time randomized approximation scheme for counting the number of bipartite matchings. [12] A remarkable theorem of Kasteleyn states that the number of perfect matchings in a planar graph can be computed exactly in polynomial time via the FKT algorithm.
The number of perfect matchings in a complete graph Kn (with n even) is given by the double factorial (n − 1)!!. [13] The numbers of matchings in complete graphs, without constraining the matchings to be perfect, are given by the telephone numbers. [14]
The number of perfect matchings in a graph is also known as the hafnian of its adjacency matrix.
One of the basic problems in matching theory is to find in a given graph all edges that may be extended to a maximum matching in the graph (such edges are called maximally matchable edges, or allowed edges). Algorithms for this problem include:
The problem of developing an online algorithm for matching was first considered by Richard M. Karp, Umesh Vazirani, and Vijay Vazirani in 1990. [18]
In the online setting, nodes on one side of the bipartite graph arrive one at a time and must either be immediately matched to the other side of the graph or discarded. This is a natural generalization of the secretary problem and has applications to online ad auctions. The best online algorithm, for the unweighted maximization case with a random arrival model, attains a competitive ratio of 0.696. [19]
Kőnig's theorem states that, in bipartite graphs, the maximum matching is equal in size to the minimum vertex cover. Via this result, the minimum vertex cover, maximum independent set, and maximum vertex biclique problems may be solved in polynomial time for bipartite graphs.
Hall's marriage theorem provides a characterization of bipartite graphs which have a perfect matching and the Tutte theorem provides a characterization for arbitrary graphs.
In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M.
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows:
In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.
In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening.
In graph theory, a vertex cover of a graph is a set of vertices that includes at least one endpoint of every edge of the graph.
In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.
In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.
In graph theory, a complete coloring is a vertex coloring in which every pair of colors appears on at least one pair of adjacent vertices. Equivalently, a complete coloring is minimal in the sense that it cannot be transformed into a proper coloring with fewer colors by merging pairs of color classes. The achromatic numberψ(G) of a graph G is the maximum number of colors possible in any complete coloring of G.
In graph theory, a dominating set for a graph G is a subset D of its vertices, such that any vertex of G is in D, or has a neighbor in D. The domination numberγ(G) is the number of vertices in a smallest dominating set for G.
In graph theory, a domatic partition of a graph is a partition of into disjoint sets , ,..., such that each Vi is a dominating set for G. The figure on the right shows a domatic partition of a graph; here the dominating set consists of the yellow vertices, consists of the green vertices, and consists of the blue vertices.
In graph theory, a cut is a partition of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of edges that have one endpoint in each subset of the partition. These edges are said to cross the cut. In a connected graph, each cut-set determines a unique cut, and in some cases cuts are identified with their cut-sets rather than with their vertex partitions.
In graph theory, an edge cover of a graph is a set of edges such that every vertex of the graph is incident to at least one edge of the set. In computer science, the minimum edge cover problem is the problem of finding an edge cover of minimum size. It is an optimization problem that belongs to the class of covering problems and can be solved in polynomial time.
In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig, describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs. It was discovered independently, also in 1931, by Jenő Egerváry in the more general case of weighted graphs.
In computer science, the Hopcroft–Karp algorithm is an algorithm that takes a bipartite graph as input and produces a maximum-cardinality matching as output — a set of as many edges as possible with the property that no two edges share an endpoint. It runs in time in the worst case, where is set of edges in the graph, is set of vertices of the graph, and it is assumed that . In the case of dense graphs the time bound becomes , and for sparse random graphs it runs in time with high probability.
Maximum cardinality matching is a fundamental problem in graph theory. We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible.
The minimum-cost flow problem (MCFP) is an optimization and decision problem to find the cheapest possible way of sending a certain amount of flow through a flow network. A typical application of this problem involves finding the best delivery route from a factory to a warehouse where the road network has some capacity and cost associated. The minimum cost flow problem is one of the most fundamental among all flow and circulation problems because most other such problems can be cast as a minimum cost flow problem and also that it can be solved efficiently using the network simplex algorithm.
In graph theory, boxicity is a graph invariant, introduced by Fred S. Roberts in 1969.
In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices.
In graph theory, the blossom algorithm is an algorithm for constructing maximum matchings on graphs. The algorithm was developed by Jack Edmonds in 1961, and published in 1965. Given a general graph G = (V, E), the algorithm finds a matching M such that each vertex in V is incident with at most one edge in M and |M| is maximized. The matching is constructed by iteratively improving an initial empty matching along augmenting paths in the graph. Unlike bipartite matching, the key new idea is that an odd-length cycle in the graph (blossom) is contracted to a single vertex, with the search continuing iteratively in the contracted graph.
In graph theory, a well-covered graph is an undirected graph in which the minimal vertex covers all have the same size. Here, a vertex cover is a set of vertices that touches all edges, and it is minimal if removing any vertex from it would leave some edge uncovered. Equivalently, well-covered graphs are the graphs in which all maximal independent sets have equal size. Well-covered graphs were defined and first studied by Michael D. Plummer in 1970.
Each node is incident to at most one edge in the matching. The edges are said to be independent.
{{citation}}
: CS1 maint: multiple names: authors list (link)