Memory Technology Device

Last updated
Flash-EEPROM in a Router - a true MTD Macronix MX29LV320ATTC-70G 20110908.jpg
Flash-EEPROM in a Router – a true MTD

A Memory Technology Device (MTD) is a type of device file in Linux for interacting with flash memory. The MTD subsystem was created to provide an abstraction layer between the hardware-specific device drivers and higher-level applications. Although character and block device files already existed, their semantics don't map well to the way that flash memory devices operate.

Contents

USB sticks, MMCs, SDs, CompactFlashes and other popular removable devices are not MTDs. Although they contain flash memory, this is hidden behind a block device interface using a Flash Translation Layer and not directly interfacing with the kernel. [1]

When using an MTD, the use of an MTD aware file system such as UBIFS, JFFS2 or YAFFS is recommended. The MTD subsystem exports block devices as well, which allows the use of common filesystem like ext4. However, using an MTD this way is not recommended since there is neither detection of bad blocks nor any kind of wear leveling.

MTDs don't address to the kernel like traditional storage devices (Solid State Drive, Hard Disk Drive...) using LBAs, but rather using offsets and sizes.

Related Research Articles

<span class="mw-page-title-main">Operating system</span> Software that manages computer hardware resources

An operating system (OS) is system software that manages computer hardware and software resources, and provides common services for computer programs.

Hardware abstractions are sets of routines in software that provide programs with access to hardware resources through programming interfaces. The programming interface allows all devices in a particular class C of hardware devices to be accessed through identical interfaces even though C may contain different subclasses of devices that each provide a different hardware interface.

udev is a device manager for the Linux kernel. As the successor of devfsd and hotplug, udev primarily manages device nodes in the /dev directory. At the same time, udev also handles all user space events raised when hardware devices are added into the system or removed from it, including firmware loading as required by certain devices.

<span class="mw-page-title-main">USB mass storage device class</span> USB device class for drives

The USB mass storage device class is a set of computing communications protocols, specifically a USB Device Class, defined by the USB Implementers Forum that makes a USB device accessible to a host computing device and enables file transfers between the host and the USB device. To a host, the USB device acts as an external hard drive; the protocol set interfaces with a number of storage devices.

The Direct Rendering Manager (DRM) is a subsystem of the Linux kernel responsible for interfacing with GPUs of modern video cards. DRM exposes an API that user-space programs can use to send commands and data to the GPU and perform operations such as configuring the mode setting of the display. DRM was first developed as the kernel-space component of the X Server Direct Rendering Infrastructure, but since then it has been used by other graphic stack alternatives such as Wayland and standalone applications and libraries such as SDL2 and Kodi.

<span class="mw-page-title-main">Architecture of Windows NT</span> Overview of the architecture of the Microsoft Windows NT line of operating systems

The architecture of Windows NT, a line of operating systems produced and sold by Microsoft, is a layered design that consists of two main components, user mode and kernel mode. It is a preemptive, reentrant multitasking operating system, which has been designed to work with uniprocessor and symmetrical multiprocessor (SMP)-based computers. To process input/output (I/O) requests, it uses packet-driven I/O, which utilizes I/O request packets (IRPs) and asynchronous I/O. Starting with Windows XP, Microsoft began making 64-bit versions of Windows available; before this, there were only 32-bit versions of these operating systems.

Journalling Flash File System version 2 or JFFS2 is a log-structured file system for use with flash memory devices. It is the successor to JFFS. JFFS2 has been included into the Linux kernel since September 23, 2001, when it was merged into the Linux kernel mainline as part of the kernel version 2.4.10 release. JFFS2 is also available for a few bootloaders, like Das U-Boot, Open Firmware, the eCos RTOS, the RTEMS RTOS, and the RedBoot. Most prominent usage of the JFFS2 comes from OpenWrt.

<span class="mw-page-title-main">Linux kernel interfaces</span> An overview and comparison of the Linux kernal APIs and ABIs.

The Linux kernel provides multiple interfaces to user-space and kernel-mode code that are used for varying purposes and that have varying properties by design. There are two types of application programming interface (API) in the Linux kernel:

  1. the "kernel–user space" API; and
  2. the "kernel internal" API.
<span class="mw-page-title-main">Solid-state drive</span> Data storage device

A solid-state drive (SSD) is a solid-state storage device that uses integrated circuit assemblies to store data persistently, typically using flash memory, and functions as secondary storage in the hierarchy of computer storage. It is also sometimes called a semiconductor storage device, a solid-state device, or a solid-state disk, even though SSDs lack the physical spinning disks and movable read-write heads used in hard disk drives (HDDs) and floppy disks. SSD also has rich internal parallelism for data processing.

The Linux booting process involves multiple stages and is in many ways similar to the BSD and other Unix-style boot processes, from which it derives. Although the Linux booting process depend very much on the computer architecture, those architectures share similar stages and software components, including system startup, bootloader execution, loading and startup of a Linux kernel image, and execution of various startup scripts and daemons. Those are grouped into 4 steps: system startup, bootloader stage, kernel stage, and init process. When a Linux system is powered up or reset, its processor will execute a specific firmware/program for system initialization, such as Power-on self-test, invoking the reset vector to start a program at a known address in flash/ROM, then load the bootloader into RAM for later execution. In personal computer (PC), not only limited to Linux-distro PC, this firmware/program is called BIOS, which is stored in the mainboard. In embedded Linux system, this firmware/program is called boot ROM. After being loaded into RAM, bootloader will execute to load the second-stage bootloader. The second-stage bootloader will load the kernel image into memory, decompress and initialize it then pass control to this kernel image. Second-stage bootloader also performs several operation on the system such as system hardware check, mounting the root device, loading the necessary kernel modules,... Finally, the very first user-space process starts, and other high-level system initializations are performed.

LogFS is a Linux log-structured and scalable flash file system, intended for use on large devices of flash memory. It is written by Jörn Engel and in part sponsored by the CE Linux Forum.

UBIFS is a flash file system for unmanaged flash memory devices. UBIFS works on top of an UBI layer, which is itself on top of a memory technology device (MTD) layer. The file system is developed by Nokia engineers with help of the University of Szeged, Hungary. Development began in earnest in 2007, with the first stable release made to Linux kernel 2.6.27 in October 2008.

A flash file system is a file system designed for storing files on flash memory–based storage devices. While flash file systems are closely related to file systems in general, they are optimized for the nature and characteristics of flash memory, and for use in particular operating systems.

<span class="mw-page-title-main">Kernel (operating system)</span> Core of a computer operating system

The kernel is a computer program at the core of a computer's operating system and generally has complete control over everything in the system. The kernel is also responsible for preventing and mitigating conflicts between different processes. It is the portion of the operating system code that is always resident in memory and facilitates interactions between hardware and software components. A full kernel controls all hardware resources via device drivers, arbitrates conflicts between processes concerning such resources, and optimizes the utilization of common resources e.g. CPU & cache usage, file systems, and network sockets. On most systems, the kernel is one of the first programs loaded on startup. It handles the rest of startup as well as memory, peripherals, and input/output (I/O) requests from software, translating them into data-processing instructions for the central processing unit.

A trim command allows an operating system to inform a solid-state drive (SSD) which blocks of data are no longer considered to be "in use" and therefore can be erased internally.

NVM Express (NVMe) or Non-Volatile Memory Host Controller Interface Specification (NVMHCIS) is an open, logical-device interface specification for accessing a computer's non-volatile storage media usually attached via the PCI Express bus. The initial NVM stands for non-volatile memory, which is often NAND flash memory that comes in several physical form factors, including solid-state drives (SSDs), PCIe add-in cards, and M.2 cards, the successor to mSATA cards. NVM Express, as a logical-device interface, has been designed to capitalize on the low latency and internal parallelism of solid-state storage devices.

bcache is a cache in the Linux kernel's block layer, which is used for accessing secondary storage devices. It allows one or more fast storage devices, such as flash-based solid-state drives (SSDs), to act as a cache for one or more slower storage devices, such as hard disk drives (HDDs); this effectively creates hybrid volumes and provides performance improvements.

dm-cache is a component of the Linux kernel's device mapper, which is a framework for mapping block devices onto higher-level virtual block devices. It allows one or more fast storage devices, such as flash-based solid-state drives (SSDs), to act as a cache for one or more slower storage devices such as hard disk drives (HDDs); this effectively creates hybrid volumes and provides secondary storage performance improvements.

An open-channel solid state drive is a solid-state drive which does not have a firmware Flash Translation Layer implemented on the device, but instead leaves the management of the physical solid-state storage to the computer's operating system. The Linux 4.4 kernel is an example of an operating system kernel that supports open-channel SSDs which follow the NVM Express specification. The interface used by the operating system to access open-channel solid state drives is called LightNVM.

<span class="mw-page-title-main">Windows Subsystem for Linux</span> Compatibility layer for running Linux binary executables natively on Windows

Windows Subsystem for Linux (WSL) is a feature of Windows that allows developers to run a Linux environment without the need for a separate virtual machine or dual booting. There are two versions of WSL: WSL 1 and WSL 2. WSL 1 was first released on August 2, 2016, and acts as a compatibility layer for running Linux binary executables by implementing Linux system calls on the Windows kernel. It is available on Windows 10, Windows 10 LTSB/LTSC, Windows 11, Windows Server 2016, Windows Server 2019 and Windows Server 2022.

References

  1. "Memory Technology Device Overview" . Retrieved 1 September 2012.

Further reading