This article is written like a personal reflection, personal essay, or argumentative essay that states a Wikipedia editor's personal feelings or presents an original argument about a topic.(July 2014) |
The Linux kernel provides multiple interfaces to user-space and kernel-mode code that are used for varying purposes and that have varying properties by design. There are two types of application programming interface (API) in the Linux kernel:
The Linux API includes the kernel–user space API, which allows code in user space to access system resources and services of the Linux kernel. [3] It is composed of the system call interface of the Linux kernel and the subroutines in the C standard library. The focus of the development of the Linux API has been to provide the usable features of the specifications defined in POSIX in a way which is reasonably compatible, robust and performant, and to provide additional useful features not defined in POSIX, just as the kernel–user space APIs of other systems implementing the POSIX API also provide additional features not defined in POSIX.
The Linux API, by choice, has been kept stable over the decades through a policy of not introducing breaking changes; this stability guarantees the portability of source code. [4] At the same time, Linux kernel developers have historically been conservative and meticulous about introducing new system calls.[ citation needed ]
Much available free and open-source software is written for the POSIX API. Since so much more development flows into the Linux kernel as compared to the other POSIX-compliant combinations of kernel and C standard library,[ citation needed ] the Linux kernel and its API have been augmented with additional features. Programming for the full Linux API, rather than just the POSIX API, may provide advantages in cases where those additional features are useful. Well-known current examples are udev, systemd and Weston. [5] People such as Lennart Poettering openly advocate to prefer the Linux API over the POSIX API, where this offers advantages. [6]
At FOSDEM 2016, Michael Kerrisk explained some of the perceived issues with the Linux kernel's user-space API, describing that it contains multiple design errors by being non-extensible, unmaintainable, overly complex, of limited purpose, in violation of standards, and inconsistent. Most of those mistakes cannot be fixed because doing so would break the ABI that the kernel presents to the user space. [7]
The system call interface of a kernel is the set of all implemented and available system calls in a kernel. In the Linux kernel, various subsystems, such as the Direct Rendering Manager (DRM), define their own system calls, all of which are part of the system call interface.
Various issues with the organization of the Linux kernel system calls are being publicly discussed. Issues have been pointed out by Andy Lutomirski, Michael Kerrisk and others. [8] [9] [10] [11]
A C standard library for Linux includes wrappers around the system calls of the Linux kernel; the combination of the Linux kernel system call interface and a C standard library is what builds the Linux API. Some popular implementations of the C standard library are
As in other Unix-like systems, additional capabilities of the Linux kernel exist that are not part of POSIX:
futex
(fast userspace mutex), epoll
, splice
, dnotify
, fanotify
, and inotify
have been exclusive to the Linux kernel so far. getrandom
was introduced in version 3.17 of the Linux kernel mainline [12] memfd
was proposed by the kdbus developers [13] memfd_create
was merged into the Linux kernel mainline in kernel version 3.17 readahead
initiates a file "read-ahead" into page cacheDRM has been paramount for the development and implementations of well-defined and performant free and open-source graphics device drivers without which no rendering acceleration would be available at all, only the 2D drivers would be available in the X.Org Server. DRM was developed for Linux, and since has been ported to other operating systems as well. [14]
This article needs attention from an expert in free and open-source software, softwareor computing. The specific problem is: This section mostly ignores the kernel-userspace ABI (that is very real and important thing) and jumps into userspace-to-userspace APIs.(February 2018) |
The term Linux ABI refers to a kernel–user space ABI. The application binary interface refers to the compiled binaries, in machine code. Any such ABI is therefore bound to the instruction set. Defining a useful ABI and keeping it stable is less the responsibility of the Linux kernel developers or of the developers of the GNU C Library, and more the task for Linux distributions and independent software vendors (ISVs) who wish to sell and provide support for their proprietary software as binaries only for such a single Linux ABI, as opposed to supporting multiple Linux ABIs.
An ABI has to be defined for every instruction set, such as x86, x86-64, MIPS, ARMv7-A (32-Bit), ARMv8-A (64-Bit), etc. with the endianness, if both are supported.
It should be able to compile the software with different compilers against the definitions specified in the ABI and achieve full binary compatibility. Compilers that are free and open-source software are e.g. GNU Compiler Collection, LLVM/Clang.
Many kernel-internal APIs exist, allowing kernel subsystems to interface with one another. These are being kept fairly stable, but there is no guarantee for stability. A kernel-internal API can be changed when such a need is indicated by new research or insights; all necessary modifications and testing have to be done by the author.
The Linux kernel is a monolithic kernel, hence device drivers are kernel components. To ease the burden of companies maintaining their (proprietary) device drivers outside of the main kernel tree, stable APIs for the device drivers have been repeatedly requested. The Linux kernel developers have repeatedly denied guaranteeing stable in-kernel APIs for device drivers. Guaranteeing such would have faltered the development of the Linux kernel in the past and would still in the future and, due to the nature of free and open-source software, are not necessary. Ergo, by choice, the Linux kernel has no stable in-kernel API. [15]
Since there are no stable in-kernel APIs, there cannot be stable in-kernel ABIs. [16]
For many use cases, the Linux API is considered too low-level, so APIs of higher abstraction must be used. Higher-level APIs must be implemeted on top of lower-level APIs. Examples:
In the context of an operating system, a device driver is a computer program that operates or controls a particular type of device that is attached to a computer or automaton. A driver provides a software interface to hardware devices, enabling operating systems and other computer programs to access hardware functions without needing to know precise details about the hardware being used.
The Linux framebuffer (fbdev) is a linux subsystem used to show graphics on a computer monitor, typically on the system console.
The Open Sound System (OSS) is an interface for making and capturing sound in Unix and Unix-like operating systems. It is based on standard Unix devices system calls. The term also sometimes refers to the software in a Unix kernel that provides the OSS interface; it can be thought of as a device driver for sound controller hardware. The goal of OSS is to allow the writing of sound-based applications that are agnostic of the underlying sound hardware.
In some operating systems, including Unix-like systems, a pseudoterminal, pseudotty, or PTY is a pair of pseudo-device endpoints (files) which establish asynchronous, bidirectional communication (IPC) channel between two or more processes.
udev is a device manager for the Linux kernel. As the successor of devfsd and hotplug, udev primarily manages device nodes in the /dev directory. At the same time, udev also handles all user space events raised when hardware devices are added into the system or removed from it, including firmware loading as required by certain devices.
The Direct Rendering Manager (DRM) is a subsystem of the Linux kernel responsible for interfacing with GPUs of modern video cards. DRM exposes an API that user-space programs can use to send commands and data to the GPU and perform operations such as configuring the mode setting of the display. DRM was first developed as the kernel-space component of the X Server Direct Rendering Infrastructure, but since then it has been used by other graphic stack alternatives such as Wayland and standalone applications and libraries such as SDL2 and Kodi.
The architecture of Windows NT, a line of operating systems produced and sold by Microsoft, is a layered design that consists of two main components, user mode and kernel mode. It is a preemptive, reentrant multitasking operating system, which has been designed to work with uniprocessor and symmetrical multiprocessor (SMP)-based computers. To process input/output (I/O) requests, it uses packet-driven I/O, which utilizes I/O request packets (IRPs) and asynchronous I/O. Starting with Windows XP, Microsoft began making 64-bit versions of Windows available; before this, there were only 32-bit versions of these operating systems.
D-Bus is a message-oriented middleware mechanism that allows communication between multiple processes running concurrently on the same machine. D-Bus was developed as part of the freedesktop.org project, initiated by GNOME developer Havoc Pennington to standardize services provided by Linux desktop environments such as GNOME and KDE.
A free and open-source graphics device driver is a software stack which controls computer-graphics hardware and supports graphics-rendering application programming interfaces (APIs) and is released under a free and open-source software license. Graphics device drivers are written for specific hardware to work within a specific operating system kernel and to support a range of APIs used by applications to access the graphics hardware. They may also control output to the display if the display driver is part of the graphics hardware. Most free and open-source graphics device drivers are developed by the Mesa project. The driver is made up of a compiler, a rendering API, and software which manages access to the graphics hardware.
In computer networking, STREAMS is the native framework in Unix System V for implementing character device drivers, network protocols, and inter-process communication. In this framework, a stream is a chain of coroutines that pass messages between a program and a device driver. STREAMS originated in Version 8 Research Unix, as Streams.
Netlink is a socket family used for inter-process communication (IPC) between both the kernel and userspace processes, and between different userspace processes, in a way similar to the Unix domain sockets available on certain Unix-like operating systems, including its original incarnation as a Linux kernel interface, as well as in the form of a later implementation on FreeBSD. Similarly to the Unix domain sockets, and unlike INET sockets, Netlink communication cannot traverse host boundaries. However, while the Unix domain sockets use the file system namespace, Netlink sockets are usually addressed by process identifiers (PIDs).
PulseAudio is a network-capable sound server program distributed via the freedesktop.org project. It runs mainly on Linux, including Windows Subsystem for Linux on Microsoft Windows and Termux on Android; various BSD distributions such as FreeBSD, OpenBSD, and macOS; as well as Illumos distributions and the Solaris operating system. It serves as a middleware in between applications and hardware and handles raw PCM audio streams.
nouveau is a free and open-source graphics device driver for Nvidia video cards and the Tegra family of SoCs written by independent software engineers, with minor help from Nvidia employees.
GVfs is GNOME's userspace virtual filesystem designed to work with the I/O abstraction of GIO, a library available in GLib since version 2.15.1. It installs several modules that are automatically used by applications using the APIs of libgio. There is also FUSE support that allows applications not using GIO to access the GVfs filesystems.
A Unix-like operating system is one that behaves in a manner similar to a Unix system, although not necessarily conforming to or being certified to any version of the Single UNIX Specification. A Unix-like application is one that behaves like the corresponding Unix command or shell. Although there are general philosophies for Unix design, there is no technical standard defining the term, and opinions can differ about the degree to which a particular operating system or application is Unix-like. Some well-known examples of Unix-like operating systems include Linux, FreeBSD and OpenBSD. These systems are often used on servers as well as on personal computers and other devices. Many popular applications, such as the Apache web server and the Bash shell, are also designed to be used on Unix-like systems.
The Linux kernel is a free and open source, UNIX-like kernel that is used in many computer systems worldwide. The kernel was created by Linus Torvalds in 1991 and was soon adopted as the kernel for the GNU operating system (OS) which was created to be a free replacement for Unix. Since the late 1990s, it has been included in many operating system distributions, many of which are called Linux. One such Linux kernel operating system is Android which is used in many mobile and embedded devices.
The Linux console is a system console internal to the Linux kernel. A system console is the device which receives all kernel messages and warnings and which allows logins in single user mode. The Linux console provides a way for the kernel and other processes to send text output to the user, and to receive text input from the user. The user typically enters text with a computer keyboard and reads the output text on a computer monitor. The Linux kernel supports virtual consoles – consoles that are logically separate, but which access the same physical keyboard and display. The Linux console are implemented by the VT subsystem of the Linux kernel, and do not rely on any user space software. This is in contrast to a terminal emulator, which is a user space process that emulates a terminal, and is typically used in a graphical display environment.
Lennart Poettering is a German software engineer working for Microsoft and the original author of PulseAudio, Avahi and systemd.
Longene is a Linux-based operating system kernel intended to be binary compatible with application software and device drivers made for Microsoft Windows and Linux. As of 1.0-rc2, it consists of a Linux kernel module implementing aspects of the Windows kernel and a modified Wine distribution designed to take advantage of the more native interface. Longene is written in the C programming language and is free and open source software. It is licensed under the terms of the GNU General Public License version 2 (GPLv2).
HarmonyOS Kernel, sometimes referred to as the Harmony kernel, is a computer operating system (OS) kernel developed by Huawei since August 2023. It is used in the HarmonyOS 5 version of the proprietary HarmonyOS distributed operating system, replacing previous versions that utilized the AOSP compatibility layer, the Linux kernel, and the LiteOS kernel.
If a change results in user programs breaking, it's a bug in the kernel. We never EVER blame the user programs.
In fact, the way I see things the Linux API has been taking the role of the POSIX API and Linux is the focal point of all Free Software development. Due to that I can only recommend developers to try to hack with only Linux in mind and experience the freedom and the opportunities this offers you. So, get yourself a copy of The Linux Programming Interface, ignore everything it says about POSIX compatibility and hack away your amazing Linux software. It's quite relieving!