This article includes a list of general references, but it lacks sufficient corresponding inline citations .(April 2013) |
In mathematics, Minkowski's question-mark function, denoted ?(x), is a function with unusual fractal properties, defined by Hermann Minkowski in 1904. [1] It maps quadratic irrational numbers to rational numbers on the unit interval, via an expression relating the continued fraction expansions of the quadratics to the binary expansions of the rationals, given by Arnaud Denjoy in 1938. [2] It also maps rational numbers to dyadic rationals, as can be seen by a recursive definition closely related to the Stern–Brocot tree.
One way to define the question-mark function involves the correspondence between two different ways of representing fractional numbers using finite or infinite binary sequences. Most familiarly, a string of 0s and 1s with a single point mark ".", like "11.0010010000111111..." can be interpreted as the binary representation of a number. In this case this number is There is a different way of interpreting the same sequence, however, using continued fractions. Interpreting the fractional part "0.00100100001111110..." as a binary number in the same way, replace each consecutive block of 0's or 1's by its run length (or, for the first block of zeroes, its run length plus one), in this case generating the sequence . Then, use this sequence as the coefficients of a continued fraction: [3] [4]
The question-mark function reverses this process: it translates the continued-fraction of a given real number into a run-length encoded binary sequence, and then reinterprets that sequence as a binary number. [3] [4] For instance, for the example above, . To define this formally, if an irrational number has the (non-terminating) continued-fraction representation then the value of the question-mark function on is defined as the value of the infinite series A rational number has a terminating continued-fraction representation , so the value of the question-mark function on reduces to the dyadic rational defined by a finite sum, A quadratic irrational number is represented by a periodic continued fraction, so the value of the question-mark function on is a periodic binary fraction and thus a non-dyadic rational number.
The question mark is clearly visually self-similar. A monoid of self-similarities may be generated by two operators S and R acting on the unit square and defined as follows:
Visually, S shrinks the unit square to its bottom-left quarter, while R performs a point reflection through its center.
A point on the graph of ? has coordinates (x, ?(x)) for some x in the unit interval. Such a point is transformed by S and R into another point of the graph, because ? satisfies the following identities for all x ∈ [0, 1]:
These two operators may be repeatedly combined, forming a monoid. A general element of the monoid is then
for positive integers a1, a2, a3, …. Each such element describes a self-similarity of the question-mark function. This monoid is sometimes called the period-doubling monoid , and all period-doubling fractal curves have a self-symmetry described by it (the de Rham curve, of which the question mark is a special case, is a category of such curves). The elements of the monoid are in correspondence with the rationals, by means of the identification of a1, a2, a3, … with the continued fraction [0; a1, a2, a3,…]. Since both and are linear fractional transformations with integer coefficients, the monoid may be regarded as a subset of the modular group PSL(2, Z).
The question mark function provides a one-to-one mapping from the non-dyadic rationals to the quadratic irrationals, thus allowing an explicit proof of countability of the latter. These can, in fact, be understood to correspond to the periodic orbits for the dyadic transformation. This can be explicitly demonstrated in just a few steps.
Define two moves: a left move and a right move, valid on the unit interval as and and and The question mark function then obeys a left-move symmetry and a right-move symmetry where denotes function composition. These can be arbitrarily concatenated. Consider, for example, the sequence of left-right moves Adding the subscripts C and D, and, for clarity, dropping the composition operator in all but a few places, one has: Arbitrary finite-length strings in the letters L and R correspond to the dyadic rationals, in that every dyadic rational can be written as both for integer n and m and as finite length of bits with Thus, every dyadic rational is in one-to-one correspondence with some self-symmetry of the question mark function.
Some notational rearrangements can make the above slightly easier to express. Let and stand for L and R. Function composition extends this to a monoid, in that one can write and generally, for some binary strings of digits A, B, where AB is just the ordinary concatenation of such strings. The dyadic monoid M is then the monoid of all such finite-length left-right moves. Writing as a general element of the monoid, there is a corresponding self-symmetry of the question mark function:
An explicit mapping between the rationals and the dyadic rationals can be obtained providing a reflection operator and noting that both and Since is the identity, an arbitrary string of left-right moves can be re-written as a string of left moves only, followed by a reflection, followed by more left moves, a reflection, and so on, that is, as which is clearly isomorphic to from above. Evaluating some explicit sequence of at the function argument gives a dyadic rational; explicitly, it is equal to where each is a binary bit, zero corresponding to a left move and one corresponding to a right move. The equivalent sequence of moves, evaluated at gives a rational number It is explicitly the one provided by the continued fraction keeping in mind that it is a rational because the sequence was of finite length. This establishes a one-to-one correspondence between the dyadic rationals and the rationals.
Consider now the periodic orbits of the dyadic transformation. These correspond to bit-sequences consisting of a finite initial "chaotic" sequence of bits , followed by a repeating string of length . Such repeating strings correspond to a rational number. This is easily made explicit. Write one then clearly has Tacking on the initial non-repeating sequence, one clearly has a rational number. In fact, every rational number can be expressed in this way: an initial "random" sequence, followed by a cycling repeat. That is, the periodic orbits of the map are in one-to-one correspondence with the rationals.
Such periodic orbits have an equivalent periodic continued fraction, per the isomorphism established above. There is an initial "chaotic" orbit, of some finite length, followed by a repeating sequence. The repeating sequence generates a periodic continued fraction satisfying This continued fraction has the form [5] with the being integers, and satisfying Explicit values can be obtained by writing for the shift, so that while the reflection is given by so that . Both of these matrices are unimodular, arbitrary products remain unimodular, and result in a matrix of the form giving the precise value of the continued fraction. As all of the matrix entries are integers, this matrix belongs to the projective modular group
Solving explicitly, one has that It is not hard to verify that the solutions to this meet the definition of quadratic irrationals. In fact, every quadratic irrational can be expressed in this way. Thus the quadratic irrationals are in one-to-one correspondence with the periodic orbits of the dyadic transform, which are in one-to-one correspondence with the (non-dyadic) rationals, which are in one-to-one correspondence with the dyadic rationals. The question mark function provides the correspondence in each case.
The question-mark function is a strictly increasing and continuous, [6] but not absolutely continuous function. The derivative is defined almost everywhere, and can take on only two values, 0 (its value almost everywhere, including at all rational numbers) and . [7] There are several constructions for a measure that, when integrated, yields the question-mark function. One such construction is obtained by measuring the density of the Farey numbers on the real number line. The question-mark measure is the prototypical example of what are sometimes referred to as multi-fractal measures.
The question-mark function maps rational numbers to dyadic rational numbers, meaning those whose base two representation terminates, as may be proven by induction from the recursive construction outlined above. It maps quadratic irrationals to non-dyadic rational numbers. In both cases it provides an order isomorphism between these sets, [8] making concrete Cantor's isomorphism theorem according to which every two unbounded countable dense linear orders are order-isomorphic. [9] It is an odd function, and satisfies the functional equation ?(x + 1) = ?(x) + 1; consequently x ↦ ?(x) − x is an odd periodic function with period one. If ?(x) is irrational, then x is either algebraic of degree greater than two, or transcendental.
The question-mark function has fixed points at 0, 1/2 and 1, and at least two more, symmetric about the midpoint. One is approximately 0.42037. [6] It was conjectured by Moshchevitin that they were the only 5 fixed points. [10]
In 1943, Raphaël Salem raised the question of whether the Fourier–Stieltjes coefficients of the question-mark function vanish at infinity. [11] In other words, he wanted to know whether or not
This was answered affirmatively by Jordan and Sahlsten, as a special case of a result on Gibbs measures. [12]
The graph of Minkowski question mark function is a special case of fractal curves known as de Rham curves.
The recursive definition naturally lends itself to an algorithm for computing the function to any desired degree of accuracy for any real number, as the following C function demonstrates. The algorithm descends the Stern–Brocot tree in search of the input x, and sums the terms of the binary expansion of y = ?(x) on the way. As long as the loop invariant qr − ps = 1 remains satisfied there is no need to reduce the fraction m/n = p + r/q + s, since it is already in lowest terms. Another invariant is p/q ≤ x < r/s. The for
loop in this program may be analyzed somewhat like a while
loop, with the conditional break statements in the first three lines making out the condition. The only statements in the loop that can possibly affect the invariants are in the last two lines, and these can be shown to preserve the truth of both invariants as long as the first three lines have executed successfully without breaking out of the loop. A third invariant for the body of the loop (up to floating point precision) is y ≤ ?(x) < y + d, but since d is halved at the beginning of the loop before any conditions are tested, our conclusion is only that y ≤ ?(x) < y + 2d at the termination of the loop.
To prove termination, it is sufficient to note that the sum q + s
increases by at least 1 with every iteration of the loop, and that the loop will terminate when this sum is too large to be represented in the primitive C data type long
. However, in practice, the conditional break when y + d == y
is what ensures the termination of the loop in a reasonable amount of time.
/* Minkowski's question-mark function */doubleminkowski(doublex){longp=x;longq=1,r=p+1,s=1,m,n;doubled=1,y=p;if(x<p||(p<0)^(r<=0))returnx;/* out of range ?(x) =~ x */while(true){/* invariants: q * r - p * s == 1 && p / q <= x && x < r / s */d/=2;if(y+d==y)break;/* reached max possible precision */m=p+r;if((m<0)^(p<0))break;/* sum overflowed */n=q+s;if(n<0)break;/* sum overflowed */if(x<(double)m/n){r=m;s=n;}else{y+=d;p=m;q=n;}}returny+d;/* final round-off */}
Restricting the Minkowski question mark function to ?:[0,1] → [0,1], it can be used as the cumulative distribution function of a singular distribution on the unit interval. This distribution is symmetric about its midpoint, with raw moments of about m1 = 0.5, m2 = 0.290926, m3 = 0.186389 and m4 = 0.126992, [13] and so a mean and median of 0.5, a standard deviation of about 0.2023, a skewness of 0, and an excess kurtosis about −1.147.
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883.
In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.
A simple or regular continued fraction is a continued fraction with numerators all equal one, and denominators built from a sequence of integer numbers. The sequence can be finite or infinite, resulting in a finite continued fraction like
In mathematics, the surreal number system is a totally ordered proper class containing not only the real numbers but also infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. Research on the Go endgame by John Horton Conway led to the original definition and construction of surreal numbers. Conway's construction was introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned On to Pure Mathematics and Found Total Happiness.
In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also have applications in weights and measures, musical time signatures, and early mathematics education. They can accurately approximate any real number.
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; often said as "b to the power n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: In particular, .
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation. If the values of the first numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation.
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form, by some expression involving operations on the formal series.
In mathematics, a quadratic irrational number is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their least common denominator, a quadratic irrational is an irrational root of some quadratic equation with integer coefficients. The quadratic irrational numbers, a subset of the complex numbers, are algebraic numbers of degree 2, and can therefore be expressed as
In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from 0 to 1 as its argument reaches from 0 to 1. Thus, in one sense the function seems very much like a constant one which cannot grow, and in another, it does indeed monotonically grow.
In mathematics, the modular group is the projective special linear group of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and −A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic.
In mathematics, the Farey sequence of order n is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size.
In mathematics, the mediant of two fractions, generally made up of four positive integers
The dyadic transformation is the mapping
In mathematics, the blancmange curve is a self-affine fractal curve constructible by midpoint subdivision. It is also known as the Takagi curve, after Teiji Takagi who described it in 1901, or as the Takagi–Landsberg curve, a generalization of the curve named after Takagi and Georg Landsberg. The name blancmange comes from its resemblance to a Blancmange pudding. It is a special case of the more general de Rham curve.
In mathematics, a de Rham curve is a continuous fractal curve obtained as the image of the Cantor space, or, equivalently, from the base-two expansion of the real numbers in the unit interval. Many well-known fractal curves, including the Cantor function, Cesàro–Faber curve, Minkowski's question mark function, blancmange curve, and the Koch curve are all examples of de Rham curves. The general form of the curve was first described by Georges de Rham in 1957.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating.
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. For example, is a rational number, as is every integer. The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold
Hermite's problem is an open problem in mathematics posed by Charles Hermite in 1848. He asked for a way of expressing real numbers as sequences of natural numbers, such that the sequence is eventually periodic precisely when the original number is a cubic irrational.
In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.
{{citation}}
: CS1 maint: location missing publisher (link)