Mitoquinone mesylate

Last updated
Mitoquinone mesylate
Mitoquinone mesylate skeletal.svg
Clinical data
Trade names MitoQ
Identifiers
  • 10-(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)decyl-triphenylphosphanium methanesulfonate
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C38H47O7PS
Molar mass 678.82 g·mol−1
3D model (JSmol)
  • CC1=C(C(=O)C(=C(C1=O)OC)OC)CCCCCCCCCC[P+](C2=CC=CC=C2)(C3=CC=CC=C3)C4=CC=CC=C4.CS(=O)(=O)[O-]
  • InChI=1S/C37H44O4P.CH4O3S/c1-29-33(35(39)37(41-3)36(40-2)34(29)38)27-19-8-6-4-5-7-9-20-28-42(30-21-13-10-14-22-30,31-23-15-11-16-24-31)32-25-17-12-18-26-32;1-5(2,3)4/h10-18,21-26H,4-9,19-20,27-28H2,1-3H3;1H3,(H,2,3,4)/q+1;/p-1
  • Key:GVZFUVXPTPGOQT-UHFFFAOYSA-M

Mitoquinone mesylate (MitoQ) is a synthetic analogue of coenzyme Q10 which has antioxidant effects. It was first developed in New Zealand in the late 1990s. [1] It has significantly improved bioavailability and improved mitochondrial penetration compared to coenzyme Q10, [2] [3] and has shown potential in a number of medical indications, [4] [5] [6] [7] being widely sold as a dietary supplement. [8] [9]

A 2014 review found insufficient evidence for the use of mitoquinone mesylate in Parkinson's disease and other movement disorders. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Mitochondrion</span> Organelle in eukaryotic cells responsible for respiration

A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. They were discovered by Albert von Kölliker in 1857 in the voluntary muscles of insects. The term mitochondrion was coined by Carl Benda in 1898. The mitochondrion is popularly nicknamed the "powerhouse of the cell", a phrase popularized by Philip Siekevitz in a 1957 Scientific American article of the same name.

<span class="mw-page-title-main">Mitochondrial DNA</span> DNA located in mitochondria

Mitochondrial DNA is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA is only a small portion of the DNA in a eukaryotic cell; most of the DNA can be found in the cell nucleus and, in plants and algae, also in plastids such as chloroplasts.

<span class="mw-page-title-main">Respiratory complex I</span> Protein complex involved in cellular respiration

Respiratory complex I, EC 7.1.1.2 is the first large protein complex of the respiratory chains of many organisms from bacteria to humans. It catalyzes the transfer of electrons from NADH to coenzyme Q10 (CoQ10) and translocates protons across the inner mitochondrial membrane in eukaryotes or the plasma membrane of bacteria.

Coenzyme Q<sub>10</sub> Biochemical cofactor and antioxidant

Coenzyme Q10 (CoQ10) also known as ubiquinone, is a naturally occurring biochemical cofactor (coenzyme) and an antioxidant produced by the human body. It can also be obtained from dietary sources, such as meat, fish, seed oils, vegetables, and dietary supplements. CoQ10 is found in many organisms, including animals and bacteria.

Life extension is the concept of extending the human lifespan, either modestly through improvements in medicine or dramatically by increasing the maximum lifespan beyond its generally-settled biological limit of around 125 years. Several researchers in the area, along with "life extensionists", "immortalists", or "longevists", postulate that future breakthroughs in tissue rejuvenation, stem cells, regenerative medicine, molecular repair, gene therapy, pharmaceuticals, and organ replacement will eventually enable humans to have indefinite lifespans through complete rejuvenation to a healthy youthful condition (agerasia). The ethical ramifications, if life extension becomes a possibility, are debated by bioethicists.

<span class="mw-page-title-main">Carnitine</span> Amino acid active in mitochondria

Carnitine is a quaternary ammonium compound involved in metabolism in most mammals, plants, and some bacteria. In support of energy metabolism, carnitine transports long-chain fatty acids from the cytosol into mitochondria to be oxidized for free energy production, and also participates in removing products of metabolism from cells. Given its key metabolic roles, carnitine is concentrated in tissues like skeletal and cardiac muscle that metabolize fatty acids as an energy source. Generally individuals, including strict vegetarians, synthesize enough L-carnitine in vivo.

<span class="mw-page-title-main">Melatonin</span> Hormone released by the pineal gland

Melatonin, an indoleamine, is a natural compound produced by various organisms, including bacteria and eukaryotes. Its discovery in 1958 by Aaron B. Lerner and colleagues stemmed from the isolation of a substance from the pineal gland of cows that could induce skin lightening in common frogs. This compound was later identified as a hormone secreted in the brain during the night, playing a crucial role in regulating the sleep-wake cycle, also known as the circadian rhythm, in vertebrates.

The free radical theory of aging states that organisms age because cells accumulate free radical damage over time. A free radical is any atom or molecule that has a single unpaired electron in an outer shell. While a few free radicals such as melanin are not chemically reactive, most biologically relevant free radicals are highly reactive. For most biological structures, free radical damage is closely associated with oxidative damage. Antioxidants are reducing agents, and limit oxidative damage to biological structures by passivating them from free radicals.

<span class="mw-page-title-main">Reactive oxygen species</span> Highly reactive molecules formed from diatomic oxygen (O₂)

In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O2H), superoxide (O2-), hydroxyl radical (OH.), and singlet oxygen. ROS are pervasive because they are readily produced from O2, which is abundant. ROS are important in many ways, both beneficial and otherwise. ROS function as signals, that turn on and off biological functions. They are intermediates in the redox behavior of O2, which is central to fuel cells. ROS are central to the photodegradation of organic pollutants in the atmosphere. Most often however, ROS are discussed in a biological context, ranging from their effects on aging and their role in causing dangerous genetic mutations.

<span class="mw-page-title-main">Idebenone</span> Chemical compound

Idebenone is a drug that was initially developed by Takeda Pharmaceutical Company for the treatment of Alzheimer's disease and other cognitive defects. This has been met with limited success. The Swiss company Santhera Pharmaceuticals has started to investigate it for the treatment of neuromuscular diseases. In 2010, early clinical trials for the treatment of Friedreich's ataxia and Duchenne muscular dystrophy have been completed. As of December 2013 the drug is not approved for these indications in North America or Europe. It is approved by the European Medicines Agency (EMA) for use in Leber's hereditary optic neuropathy (LHON) and was designated an orphan drug in 2007.

Cardiolipin is an important component of the inner mitochondrial membrane, where it constitutes about 20% of the total lipid composition. It can also be found in the membranes of most bacteria. The name "cardiolipin" is derived from the fact that it was first found in animal hearts. It was first isolated from the beef heart in the early 1940s by Mary C. Pangborn. In mammalian cells, but also in plant cells, cardiolipin (CL) is found almost exclusively in the inner mitochondrial membrane, where it is essential for the optimal function of numerous enzymes that are involved in mitochondrial energy metabolism.

<span class="mw-page-title-main">Leber's hereditary optic neuropathy</span> Mitochondrially inherited degeneration of retinal cells in human

Leber's hereditary optic neuropathy (LHON) is a mitochondrially inherited degeneration of retinal ganglion cells (RGCs) and their axons that leads to an acute or subacute loss of central vision; it predominantly affects young adult males. LHON is transmitted only through the mother, as it is primarily due to mutations in the mitochondrial genome, and only the egg contributes mitochondria to the embryo. Men cannot pass on the disease to their offspring. LHON is usually due to one of three pathogenic mitochondrial DNA (mtDNA) point mutations. These mutations are at nucleotide positions 11778 G to A, 3460 G to A and 14484 T to C, respectively in the ND4, ND1 and ND6 subunit genes of complex I of the oxidative phosphorylation chain in mitochondria.

<span class="mw-page-title-main">Mitochondrial myopathy</span> Medical condition

Mitochondrial myopathies are types of myopathies associated with mitochondrial disease. Adenosine triphosphate (ATP), the chemical used to provide energy for the cell, cannot be produced sufficiently by oxidative phosphorylation when the mitochondrion is either damaged or missing necessary enzymes or transport proteins. With ATP production deficient in mitochondria, there is an over-reliance on anaerobic glycolysis which leads to lactic acidosis either at rest or exercise-induced.

<span class="mw-page-title-main">MELAS syndrome</span> Medical condition

Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the family of mitochondrial diseases, which also include MIDD, MERRF syndrome, and Leber's hereditary optic neuropathy. It was first characterized under this name in 1984. A feature of these diseases is that they are caused by defects in the mitochondrial genome which is inherited purely from the female parent. The most common MELAS mutation is mitochondrial mutation, mtDNA, referred to as m.3243A>G.

<span class="mw-page-title-main">Neurodegenerative disease</span> Central nervous system disease

A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple system atrophy, tauopathies, and prion diseases. Neurodegeneration can be found in the brain at many different levels of neuronal circuitry, ranging from molecular to systemic. Because there is no known way to reverse the progressive degeneration of neurons, these diseases are considered to be incurable; however research has shown that the two major contributing factors to neurodegeneration are oxidative stress and inflammation. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assemblies and induced cell death. These similarities suggest that therapeutic advances against one neurodegenerative disease might ameliorate other diseases as well.

<span class="mw-page-title-main">Mitochondrial trifunctional protein</span> Inner mitochondrial membrane protein

Mitochondrial trifunctional protein (MTP) is a protein attached to the inner mitochondrial membrane which catalyzes three out of the four steps in beta oxidation. MTP is a hetero-octamer composed of four alpha and four beta subunits:

<span class="mw-page-title-main">Ubiquinol</span> Chemical compound

A ubiquinol is an electron-rich (reduced) form of coenzyme Q (ubiquinone). The term most often refers to ubiquinol-10, with a 10-unit tail most commonly found in humans.

Reductive stress (RS) is defined as an abnormal accumulation of reducing equivalents despite being in the presence of intact oxidation and reduction systems. A redox reaction involves the transfer of electrons from reducing agents (reductants) to oxidizing agents (oxidants) and redox couples are accountable for the majority of the cellular electron flow. RS is a state where there are more reducing equivalents compared to reductive oxygen species (ROS) in the form of known biological redox couples such as GSH/GSSG, NADP+/NADPH, and NAD+/NADH. Reductive stress is the counterpart to oxidative stress, where electron acceptors are expected to be mostly reduced. Reductive stress is likely derived from intrinsic signals that allow for the cellular defense against pro-oxidative conditions. There is a feedback regulation balance between reductive and oxidative stress where chronic RS induce oxidative species (OS), resulting in an increase in production of RS, again.

<span class="mw-page-title-main">Mitochondrial theory of ageing</span> Theory of ageing

The mitochondrial theory of ageing has two varieties: free radical and non-free radical. The first is one of the variants of the free radical theory of ageing. It was formulated by J. Miquel and colleagues in 1980 and was developed in the works of Linnane and coworkers (1989). The second was proposed by A. N. Lobachev in 1978.

<span class="mw-page-title-main">Plácido Navas Lloret</span> Spanish Professor of Cell Biology

Plácido Navas Lloret is a Spanish Professor of Cell Biology in the Andalusian Center for Developmental Biology at the Pablo de Olavide University in Sevilla, Spain. From 2002 to 2012, Professor Navas served as a board member of the International Coenzyme Q10 Association; since 2013, he has been the chairman of the association.

References

  1. USabandoned 20060229278,Taylor K, Smith R,"Mitoquinone derivatives used as mitochondrially targeted antioxidants.",published 12 October 2006, assigned to Antipodean Pharmaceuticals Inc
  2. Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, et al. (October 2018). "Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives". Acta Pharmaceutica Sinica B. 8 (6): 862–880. doi:10.1016/j.apsb.2018.05.006. PMC   6251809 . PMID   30505656.
  3. Gutierrez-Mariscal FM, Arenas-de Larriva AP, Limia-Perez L, Romero-Cabrera JL, Yubero-Serrano EM, López-Miranda J (October 2020). "Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases". International Journal of Molecular Sciences. 21 (21): 7870. doi: 10.3390/ijms21217870 . PMC   7660335 . PMID   33114148.
  4. Silva FS, Simoes RF, Couto R, Oliveira PJ (2016). "Targeting Mitochondria in Cardiovascular Diseases". Current Pharmaceutical Design. 22 (37): 5698–5717. doi:10.2174/1381612822666160822150243. PMID   27549376.
  5. Kezic A, Spasojevic I, Lezaic V, Bajcetic M (2016). "Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury". Oxidative Medicine and Cellular Longevity. 2016: 2950503. doi: 10.1155/2016/2950503 . PMC   4894993 . PMID   27313826.
  6. Oliver DM, Reddy PH (April 2019). "Small molecules as therapeutic drugs for Alzheimer's disease". Molecular and Cellular Neurosciences. 96: 47–62. doi:10.1016/j.mcn.2019.03.001. PMC   6510253 . PMID   30877034.
  7. Ismail H, Shakkour Z, Tabet M, Abdelhady S, Kobaisi A, Abedi R, et al. (October 2020). "Traumatic Brain Injury: Oxidative Stress and Novel Anti-Oxidants Such as Mitoquinone and Edaravone". Antioxidants. 9 (10): 943. doi: 10.3390/antiox9100943 . PMC   7601591 . PMID   33019512.
  8. Braakhuis AJ, Nagulan R, Somerville V (2018). "The Effect of MitoQ on Aging-Related Biomarkers: A Systematic Review and Meta-Analysis". Oxidative Medicine and Cellular Longevity. 2018: 8575263. doi: 10.1155/2018/8575263 . PMC   6079400 . PMID   30116495.
  9. Thoma A, Akter-Miah T, Reade RL, Lightfoot AP (August 2020). "Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function". Biogerontology. 21 (4): 475–484. doi:10.1007/s10522-020-09883-x. PMC   7347670 . PMID   32447556.
  10. Liu J, Wang LN (January 2014). "Mitochondrial enhancement for neurodegenerative movement disorders: a systematic review of trials involving creatine, coenzyme Q10, idebenone and mitoquinone". CNS Drugs. 28 (1): 63–8. doi:10.1007/s40263-013-0124-4. PMID   24242074. S2CID   207486107.