Niphanda fusca

Last updated

Niphanda fusca
Niphanda fusca9.jpg
Female
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Lycaenidae
Genus: Niphanda
Species:
N. fusca
Binomial name
Niphanda fusca
(Bremer & Grey, 1853)
Synonyms
  • Thecla fuscaBremer & Grey, 1853
  • Amblypodia disparBremer, 1864
  • Thecla lasureaGraeser, 1888

Niphanda fusca is a parasitic butterfly primarily found in East Asian countries such as Japan and Korea. It is a "cuckoo-type" parasite of the ant Camponotus japonicus . It utilizes chemical mimicry to trick the host worker ants into adopting it while it is a third-instar caterpillar. From there, it is fed mouth-to-mouth by the worker ants as though it were one of their own young. [1]

Contents

The butterflies of this species differ in color between the male and the female. The male has more of a purple tint with a gray underwing.

N. fusca is currently an endangered butterfly, with an alarming and rapid decrease in numbers. Many locations that have previously recorded sightings have now become areas where the butterfly is extinct. These changes, which have come about mostly in the past 40 years, have resulted from habitat changes moving away from preferred early stage succession ecosystems, as well as habitat changes due to urban development. [2]

Description

The butterfly has broad spotted wings, with larger and more pronounced patterns in the forewings. It is a beige-gray color, while its spotted patterns are a darker brown. The male butterfly has been observed to have a gray underwing.

127-Niphanda fusca.JPG

Habitat

N. fusca adults typically inhabit open habitats, such as grasslands, open woodlands, meadows, and bushes. [2] [3] They have also been found to inhabit semi-bare areas, or areas characteristic of early stages of succession, such as cliffs or grasslands near volcanoes. [4]

Due to its heavy dependence on C. japonicus, the habitat of N. fusca is limited by the habitat preferences of its host ant. C. japonicus prefers sunny areas to nest, and so N. fusca is likewise limited. The butterfly larvae need a sufficient number of aphids in order to survive, as they feed on these aphids upon birth – therefore not all places inhabited by C. japonicus are suitable for N. fusca. [4]

Home range

Most of N. fusca's early life stages are limited to the C. japonicus nest. Oviposition takes place near the honeydew-producing aphids that the host ant tends to, and the newly hatched young will feed on the excretions of the aphids. Once the caterpillar has grown to a third-instar larva, it will be taken into the C. japonicus nest where it stays for 10 months until pupation at the entrance of the nest. Egg laying occurs several months later.

Host plant

Unlike most butterflies, N. fusca does not feed nor depend on host plants, but rather feeds on the excretions of aphids and, later, on the regurgitation of C. japonicus. As a result, there are no specific plants that the female butterfly will choose to oviposit on, but rather she will seek out plants and trees near C. japonicus nests and aphid colonies to ensure a food source for her offspring. One plant that has been used in laboratory experiments is Japanese pampas grass.

Food resources

Caterpillar

As first-instar and occasionally second-instar larva, the caterpillars will feed on the honeydew-like excretions produced by the aphids. In laboratory experiments, these aphids have been found feeding on Japanese pampas grass, Miscanthus sinensis . [5] These aphids are also tended to by N. fusca's host ant, C. japonicus. [5] [3] This stands in contrast to most other parasitic butterflies, which typically feed on plants. [1]

The caterpillars are adopted in the C. japonicas nest occasionally as second-instar larva and typically as third. [6] They feed on the regurgitation of the ant, and are wholly dependent on their host ant for survival – this parasitism is thus a species-specific, obligate interaction. [3]

Parental care

Oviposition

Copulation. Niphancop.jpg
Copulation.

The female N. fusca will oviposit her eggs on a tree near aphid colonies, typically in small bunches. [7] [8] This is strategically placed so the newborn caterpillars will have an immediate source of food and are proximal to the host ants that will later adopt them. The offspring are almost ensured a food source as first instar larvae through the aphids until they pupate as the ants continue to feed them. N. fusca is univoltine, meaning the female will only lay one small brood of offspring per year. [5]

Life cycle

Eggs

Oviposition occurs near aphid colonies, as the newborn caterpillars will later feed on the honeydew-like excretions of the aphids. Eggs are laid in small bunches once a year. [7] [5]

Larvae

Once the caterpillars hatch, they feed on the honeydew produced by the aphids until they are second- or third-instar larva. These aphids are tended to by the host ant, C. japonicus, thus allowing the caterpillars to be near the ants they will soon parasitize.

As the caterpillars become third-instar larva, they will develop the exocrine glands that are essential in producing the chemicals that aid in parasitizing C. japonicus. These organs include tentacle organs and a dorsal nectary organ (DNO). [7] Third-instar caterpillars are most likely to be adopted by host C. japonicus workers, where they are then fed and raised by the host ants until they are ready for pupation. [7] Adoption typically occurs in the summer. [5]

Female Niphanda fuscaSHIZUOKA-JPN.JPG
Female

Pupae

Pupation occurs in the late spring, around 10 months after adoption as a third instar by the host ant. [5] It occurs after hibernation in the winter, which also occurs within the nest of the ant. [5] After hibernation, the larva will relocate to the edge of the C. japonicus nest where it will then form a cocoon. [9]

Adults

N. fusca will eclose also in the late spring, around two weeks after pupation – it is a late season emergent insect. [9] [10]

Parasitism

Host

N. fusca is most commonly studied for its obligate parasitism with its host ant, C. japonicus. The host worker ant will adopt the third-instar larva, where the caterpillar will then live and be raised for another 10 months. They develop for the rest of their larval stage within the nests of C. japonicus, and will choose to pupate at the entrance of the ant nest. [5] Despite the apparent size difference between the butterfly and ant larva, the ant workers will care for the caterpillars as often as their own kin. [5]

The interaction is a "cuckoo-type" parasitism, in which the caterpillars are directly fed, mouth-to-mouth, by the host ant. [1] [11] They are fed regurgitations from the adult ants, a mechanism called trophallaxis. [12] In this manner, N. fusca are completely dependent on the adult ants for their food. [1]

Mechanisms of overcoming host

N. fusca will use chemical mimicry through the production and release of cuticular hydrocarbons (CHCs) to trick the host ant into adopting the larva as their own. CHCs are typically used to communicate information on insect caste, colony, age, and more. [5] The CHCs, secreted by the DNO (an endocrine gland of N. fusca), have a major sugar component of trehalose (as opposed to the commonly thought glucose). [3]

The CHCs produced change after the caterpillar is adopted, likely evidence that the caterpillar learns and readjusts its production to more appropriately represent the odor of the worker ants it regularly comes in contact with. This is supported by a further discovery that the CHCs of the butterfly larva more closely resemble the CHC of the adult male ant rather than the CHC of the ant larva. [5]

The CHCs aid the caterpillars in avoiding ant aggression by allowing them to mimic colony-specific information production. [5]

Protective coloration and behavior

Chemical mimicry

A major mechanism that allows N. fusca to be adopted into the host ant colony is the chemical mimicry that it employs. Not only does this allow the butterfly to gain entry into this colony, thus supplying it with 10 months of mouth-to-mouth nutrients and care, but it also allows it to convey false information on colony and identity to match that of the adult male ant. [1] The caterpillar can thus proceed to live in the colony for months not only without agitation from the host ant, but also almost equal nurture from the host ant as it provides towards its own kin larva. The CHCs, or the chemicals that the caterpillar uses, are adapted to more closely mimic those of the adult male worker. [5]

Physiology

Chemical production

In addition to chemical mimicry, the secretion of the caterpillar also appeals to the taste preferences of C. japonicus. The secretion, primarily composed of tetrahelose, is made from the DNO, an endocrine gland, while the caterpillar is a third-instar larva. The chemicals are also composed of amino acids that are considered an important source of nitrogen for the host ants. [1]

These chemical productions are constantly modified to regularly appeal to the host ant – these appeasement substances may be evolutionarily stable while the parasite continues to be rare and small in population size.

Mutualism

While there is definitely a greater benefit to the butterfly in this "cuckoo-type" interaction, it has been indicated that there may be mutualism involved, especially in regards to the chemical secretions of N. fusca. The sugar, tetrahelose, could be seen as a reward for the host ants in return for raising and feeding the larva, as the ants prefer to feed on the secretions that have a greater concentration of tetrahelose. The amino acids in this appeasement substance could be seen as an important and rich source of nitrogen for the host ant. [1]

Conservation

Habitat loss

N. fusca is listed in the Japan Red List as endangered [4] – only 27 of 44 listed prefectures with records of the butterfly currently have maintained their records, showing a 39% decrease. Most of the decline has occurred in the past 40 years, from 1980s to the present. It is one of the four species that have disappeared in Shikoku. [2]

Satoyama, utilize plant layer. Satoyama, utilize plant layer.jpg
Satoyama, utilize plant layer.

Two main causes are listed for leading to N. fusca's decline in numbers and thus endangerment: degradation of satoyama ecosystems and urban development. [2] Because one of the few places the butterfly can inhabit are early stages of succession, these habitats must be maintained in such a state in order to prevent the progression into later stages and thus the loss of a habitat for the butterflies. Many of the satoyama have either been destroyed or have progressed into becoming forests due to lack of management [4] – this has been increasingly the case for the last 30–40 years. [2]

Another cause is the urban development. Not only has this led to decreased value of the satoyama (leading then to its abandonment), but this has also led to the destruction of certain natural lands to make way for urban development. While early stage succession may be harder and more expensive to maintain, the preservation of other more stable lands, such as cliffs or grasslands near volcanoes, would be more feasible of a conservation effort. [4]

A similar decline can also be seen in South Korea, where they have not been observed since 1999. [11]

Related Research Articles

<span class="mw-page-title-main">Aphid</span> Superfamily of insects

Aphids are small sap-sucking insects and members of the superfamily Aphidoidea. Common names include greenfly and blackfly, although individuals within a species can vary widely in color. The group includes the fluffy white woolly aphids. A typical life cycle involves flightless females giving live birth to female nymphs—who may also be already pregnant, an adaptation scientists call telescoping generations—without the involvement of males. Maturing rapidly, females breed profusely so that the number of these insects multiplies quickly. Winged females may develop later in the season, allowing the insects to colonize new plants. In temperate regions, a phase of sexual reproduction occurs in the autumn, with the insects often overwintering as eggs.

<span class="mw-page-title-main">Paper wasp</span> Vespid wasps that gather fibers from dead wood and plant stems

Paper wasps are vespid wasps and typically refers to members of the vespid subfamily Polistinae, though it often colloquially includes members of the subfamilies Vespinae and Stenogastrinae, discussed elsewhere, which also make nests out of paper. Paper wasp nests are characterized by open combs with down pointing cells. Some types of paper wasps are also sometimes called umbrella wasps, due to the distinctive design of their nests.

<span class="mw-page-title-main">Ichneumonoidea</span> Superfamily of wasps

The superfamily Ichneumonoidea contains one extinct and three extant families, including the two largest families within Hymenoptera: Ichneumonidae and Braconidae. The group is thought to contain as many as 100,000 species, many of which have not yet been described. Like other parasitoid wasps, they were long placed in the "Parasitica", variously considered as an infraorder or an unranked clade, now known to be paraphyletic.

<i>Formica</i> Genus of ants

Formica is a genus of ants of the family Formicidae, including species commonly known as wood ants, mound ants, thatching ants, and field ants. Formica is the type genus of the Formicidae, and of the subfamily Formicinae. The type species of genus Formica is the European red wood ant Formica rufa. Ants of this genus tend to be between 4 and 8 mm long. Ants belonging to the Formica genus possess a single knob or bump located between their thorax and abdomen. These ants primarily feed on honeydew, a sugary liquid produced by aphids. Formica ants appear to take on a shepherding role with smaller aphids, relocating them to different parts of plants to ensure a continuous food source for the aphids. By doing so, the ants can establish a relatively sustainable honeydew supply for both themselves and their colony.

<span class="mw-page-title-main">Large blue</span> Species of butterfly

The large blue is a species of butterfly in the family Lycaenidae. The species was first defined in 1758 and first recorded in Britain in 1795. In 1979 the species became mostly extinct in Britain but has been successfully reintroduced with new conservation methods. The species is classified as "near threatened" on the IUCN Red List of Threatened Species. Today P. arion can be found in Europe, the Caucasus, Armenia, western Siberia, Altai, north-western Kazakhstan and Sichuan.

<span class="mw-page-title-main">Brood parasitism</span> Subclass of parasitism, phenomenon that an animal relies on other inidivids to raise its young.

Brood parasitism is a subclass of parasitism and phenomenon and behavioural pattern of certain animals, brood parasites, that rely on others to raise their young. The strategy appears among birds, insects and fish. The brood parasite manipulates a host, either of the same or of another species, to raise its young as if it were its own, usually using egg mimicry, with eggs that resemble the host's.

<span class="mw-page-title-main">Black garden ant</span> Species of ant

The black garden ant, also known as the common black ant, is a formicine ant, the type species of the subgenus Lasius, which is found across Europe and in some parts of North America, South America, Asia and Australasia. The European species was split into two species; L. niger, which are found in open areas; and L. platythorax, which is found in forest habitats. It is monogynous, meaning colonies contain a single queen.

<span class="mw-page-title-main">Common blue</span> Species of butterfly

The common blue butterfly or European common blue is a butterfly in the family Lycaenidae and subfamily Polyommatinae. The butterfly is found throughout the Palearctic and has been introduced to North America. Butterflies in the Polyommatinae are collectively called blues, from the coloring of the wings. Common blue males usually have wings that are blue above with a black-brown border and a white fringe. The females are usually brown above with a blue dusting and orange spots.

<span class="mw-page-title-main">Lycaenidae</span> Family of butterflies

Lycaenidae is the second-largest family of butterflies, with over 6,000 species worldwide, whose members are also called gossamer-winged butterflies. They constitute about 30% of the known butterfly species.

An obligate parasite or holoparasite is a parasitic organism that cannot complete its life-cycle without exploiting a suitable host. If an obligate parasite cannot obtain a host it will fail to reproduce. This is opposed to a facultative parasite, which can act as a parasite but does not rely on its host to continue its life-cycle. Obligate parasites have evolved a variety of parasitic strategies to exploit their hosts. Holoparasites and some hemiparasites are obligate.

<i>Phengaris alcon</i> Species of butterfly

Phengaris alcon, the Alcon blue or Alcon large blue, is a butterfly of the family Lycaenidae and is found in Europe and across the Palearctic to Siberia and Mongolia.

<span class="mw-page-title-main">San Bruno elfin</span> Subspecies of butterfly

The San Bruno elfin is a U.S. federally listed endangered subspecies that inhabits rocky outcrops and cliffs in coastal scrub on the San Francisco Peninsula. It is endemic to this habitat in California. Its patchy distribution reflects that of its host plant, broadleaf stonecrop.

<span class="mw-page-title-main">Parasitoid wasp</span> Group of wasps

Parasitoid wasps are a large group of hymenopteran superfamilies, with all but the wood wasps (Orussoidea) being in the wasp-waisted Apocrita. As parasitoids, they lay their eggs on or in the bodies of other arthropods, sooner or later causing the death of these hosts. Different species specialise in hosts from different insect orders, most often Lepidoptera, though some select beetles, flies, or bugs; the spider wasps (Pompilidae) exclusively attack spiders.

<i>Papilio cresphontes</i> Species of butterfly

The giant swallowtail is the largest butterfly in North America. It is abundant through many parts of eastern North America; populations from western North America and down into Panama are now considered to belong to a different species, Papilio rumiko. Though it is often valued in gardens for its striking appearance, its larval stage can be a serious pest to citrus farms, which has earned its caterpillars the names orange dog or orange puppy. The giant swallowtail caterpillars possess remarkable camouflage from predators by closely resembling bird droppings. They use this, along with their osmeteria, to defend against predators such as wasps, flies, and vertebrates.

<span class="mw-page-title-main">Myrmecophily</span> Positive interspecies associations between ants and other organisms

Myrmecophily is the term applied to positive interspecies associations between ants and a variety of other organisms, such as plants, other arthropods, and fungi. Myrmecophily refers to mutualistic associations with ants, though in its more general use, the term may also refer to commensal or even parasitic interactions.

<i>Phengaris rebeli</i> Species of butterfly

Phengaris rebeli, common name mountain Alcon blue, is a species of butterfly in the family Lycaenidae. It was first found and described in Styria, Austria, on Mount Hochschwab around 1700. Although it was initially classified as a subspecies of P. alcon, a European researcher, Lucien A. Berger, designated it as a separate species in 1946. Genetic similarities between P. rebeli and P. alcon have led many researchers to argue that the two are the same species and differences are due to intraspecific variation.

<i>Jalmenus evagoras</i> Species of butterfly

Jalmenus evagoras, the imperial hairstreak, imperial blue, or common imperial blue, is a small, metallic blue butterfly of the family Lycaenidae. It is commonly found in eastern coastal regions of Australia. This species is notable for its unique mutualism with ants of the genus Iridomyrmex. The ants provide protection for juveniles and cues for adult mating behavior. They are compensated with food secreted from J. evagoras larvae. The ants greatly enhance the survival and reproductive success of the butterflies. J. evagoras lives and feeds on Acacia plants, so butterfly populations are localized to areas with preferred species of both host plants and ants.

<i>Erikssonia edgei</i> Species of butterfly

Erikssonia edgei, commonly known as the Waterberg copper, tilodi copper or Edge's acraea copper, is an obligate myrmecophylous lycaenid butterfly, which is native to Limpopo, South Africa. The critically endangered butterfly occurs in high-altitude grasslands on sandy substrates, and has only been obtained from the type and one subsequent locality. The population at the type locality, a farm in the Waterberg, went extinct about 12 years after its 1980 discovery. It was afforded species status in 2010, when no extant populations were known. The status of two populations, discovered in 2013 at a private nature reserve to the southeast, remains indeterminate.

<i>Camponotus japonicus</i> Species known as the Japanese carpenter ant

Camponotus japonicus, commonly known as the Japanese carpenter ant, is a species of ant native to eastern Asia. It is black, and one of the largest ants. A nest has about ten to thousands of individuals, and it can be a pest when it enters households or protects aphids. There are several subspecies of this ant in different areas of Asia, with the largest of the species being located in northern China.

<span class="mw-page-title-main">Singing caterpillars</span>

Singing caterpillars is a term coined by Philip James DeVries, referring to the fact that the larvae of ant-associated butterfly species of the families Riodinidae and Lycaenidae produce substrate borne sounds that attract ants. The study of these symbiotic associations was pioneered by Phil DeVries in Central America, and Naomi Pierce in Australia. Recently, Lucas Kaminski and collaborators are expanding the studies of riodinid-ant symbioses in Brazil.

References

  1. 1 2 3 4 5 6 7 Ayako Wada, Yu Isobe, Susumu Yamaguchi, Ryohei Yamaoka, Mamiko Ozaki (2001). Taste-enhancing Effects of Glycine on the Sweetness of Glucose: a Gustatory Aspect of Symbiosis between the Ant, Camponotus japonicus, and the Larvae of the Lycaenid Butterfly, Niphanda fusca. Chemical Senses. Volume 26(8), 983.
  2. 1 2 3 4 5 Yasuhiro Nakamura (2011). Conservation of butterflies in Japan: status, actions, and strategy. Journal of Insect Conservation. Vol 15(1-2), 5-22.
  3. 1 2 3 4 Hojo, M.K., Wada-Katsumata, A., Ozaki, M. et al. Gustatory synergism in ants mediates a species-specific symbiosis with lycaenid butterflies. Journal of Comparative Physiology A (2008) 194: 1043.
  4. 1 2 3 4 5 Takeuchi, T., Takahashi, J., Kiyoshi, T. et al (2015). Genetic differentiation in the endangered myrmecophilous butterfly Niphanda fusca: a comparison of natural and secondary habitats. Conservation Genetics Vol 16(4): 979.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 Masaru K Hojo, Ayako Wada-Katsumata, Toshiharu Akino, Susumu Yamaguchi, Mamiko Ozaki, Ryohei Yamaoka (2009). Chemical disguise as particular caste of host ants in the ant inquiline parasite Niphanda fusca (Lepidoptera: Lycaenidae). Proceedings of the Royal Society B 2009 276 551-558; DOI: 10.1098/rspb.2008.1064.
  6. New, Tim R. (2017). Mutualisms and Insect Conservation. Cham: Springer International Publishing. doi:10.1007/978-3-319-58292-4. ISBN   978-3-319-58291-7.
  7. 1 2 3 4 Hojo, M. K., Yamaguchi, S., Akino, T. and Yamaoka, R. (2014), Adoption of lycaenid  Niphanda fusca (Lepidoptera: Lycaenidae) caterpillars by the host ant  Camponotus japonicus (Hymenoptera: Formicidae). Entomological Science, 17: 59–65. doi:10.1111/ens.12041
  8. G. W. Elmes, J. A. Thomas, M. L. Minguira and K. Fiedler (2001). Larvae of lycaenid butterflies that parasitize ant colonies provide exceptions to normal insect growth rules. Biological Journal of the Linnean Society. Vol 73: 259-278.
  9. 1 2 Chaffey, Nigel (2011). "All flesh is grass. Plant–animal interrelationships". Annals of Botany. 108 (3): vii–vii. doi:10.1093/aob/mcr214. PMC   3158701 .
  10. Nihon Rinshi Gakkai (2006). Tyo to Ga, Volumes 57-58. Cornell University.
  11. 1 2 Choi, S.-W., Kim, S.-S., Kwon, T.-S., and Park, H. (2017) Significant decrease in local butterfly community during the last 15 years in a calcareous hill of the middle Korea.  Entomological Research, 47: 300–308. doi: 10.1111/1748-5967.12225.
  12. Model Systems in Behavioral Ecology: Integrating Conceptual, Theoretical, and Empirical Approaches. Monographs in Behavior and Ecology. Edited by Lee Alan Dugatkin. Princeton (New Jersey): Princeton University Press.