Obelia geniculata

Last updated

Obelia geniculata
Obelia geniculata.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Cnidaria
Class: Hydrozoa
Order: Leptothecata
Family: Campanulariidae
Genus: Obelia
Species:
O. geniculata
Binomial name
Obelia geniculata
(Linnaeus, 1758)

Obelia geniculata is a species of cnidarian belonging to the family Campanulariidae. [1]

The species has cosmopolitan distribution. [1]

Population genetics

Estimates of divergence times and distinctive haplotypes provide evidence of glacial refugia around Iceland and southeastern Canada. In one study, O. geniculata was first documented in these areas in the 1990s but were later found in Massachusetts and Japan in the 2000s. There are three reciprocally monophyletic clades of Obelia, one branch for the North Atlantic, one for Japan, and one for New Zealand. [2] There seems to be an ancestral haplotype that occurs in the North Atlantic populations from Massachusetts, New Brunswick, and Iceland. The population from Woods Hole, MA shows less genetic diversity than the New Brunswick population. The more recent expansion of these haplotypes demonstrates the southward movement of hydroid populations, possibly due to climate change. The North Atlantic populations contain ancestral haplotypes, which differ from the populations in Japan and New Zealand. Pacific populations have more haplotype diversity than all four of the North Atlantic populations, which indicates that the North Atlantic population is more recently established than the Pacific population. [2] The minimum estimated age of the New Brunswick population is between 47 and 143 thousand years old. Including the Massachusetts population, this number is between 82 and 150 thousand years, but Iceland has the oldest estimated population with the minimum age ranging from 68 to 204 thousand years old. [2]

Obelia are distinguishable from others in Campanulariidae from their size in length and diameter, as well as their smaller hydrothecal cusps and relatively thinner perisarc thickness. Some morphological traits are hard to distinguish across species, so observing a combination of these traits will help with identification. Other useful observable characteristics are branching pattern of colonies and length of trophosome. There are variations and exceptions to these, which makes identification even more difficult. [3] O. geniculata is characterized by a thicker perisarc with more variation that other species of Obelia. O. longissima have longer first and second order branches, in addition to a greater variation in hydrothecal cusp length than others in the genus. O. bidentata differs from the previous species due to their more cylindrical and longer hydrothecal cusps. [3]

Related Research Articles

<span class="mw-page-title-main">Hydrozoa</span> Class of cnidarians

Hydrozoa is a taxonomic class of individually very small, predatory animals, some solitary and some colonial, most of which inhabit saline water. The colonies of the colonial species can be large, and in some cases the specialized individual animals cannot survive outside the colony. A few genera within this class live in freshwater habitats. Hydrozoans are related to jellyfish and corals and belong to the phylum Cnidaria.

<i>Obelia</i> Genus of hydrozoans

Obelia is a genus of hydrozoans, a class of mainly marine and some freshwater animal species that have both polyp and medusa stages in their life cycle. Hydrozoa belongs to the phylum Cnidaria, which are aquatic organisms that are relatively simple in structure with a diameter around 1mm. There are currently 120 known species, with more to be discovered. These species are grouped into three broad categories: O. bidentata, O. dichotoma, and O. geniculata. O. longissima was later accepted as a legitimate species, but taxonomy regarding the entire genus is debated over.

<span class="mw-page-title-main">Founder effect</span> Effect in population genetics

In population genetics, the founder effect is the loss of genetic variation that occurs when a new population is established by a very small number of individuals from a larger population. It was first fully outlined by Ernst Mayr in 1942, using existing theoretical work by those such as Sewall Wright. As a result of the loss of genetic variation, the new population may be distinctively different, both genotypically and phenotypically, from the parent population from which it is derived. In extreme cases, the founder effect is thought to lead to the speciation and subsequent evolution of new species.

<span class="mw-page-title-main">Human genetic variation</span> Genetic diversity in human populations

Human genetic variation is the genetic differences in and among populations. There may be multiple variants of any given gene in the human population (alleles), a situation called polymorphism.

<span class="mw-page-title-main">Jan Klein</span> Czech-American immunologist (1936–2023)

Jan Klein was a Czech–American immunologist.

Ancestral reconstruction is the extrapolation back in time from measured characteristics of individuals to their common ancestors. It is an important application of phylogenetics, the reconstruction and study of the evolutionary relationships among individuals, populations or species to their ancestors. In the context of evolutionary biology, ancestral reconstruction can be used to recover different kinds of ancestral character states of organisms that lived millions of years ago. These states include the genetic sequence, the amino acid sequence of a protein, the composition of a genome, a measurable characteristic of an organism (phenotype), and the geographic range of an ancestral population or species. This is desirable because it allows us to examine parts of phylogenetic trees corresponding to the distant past, clarifying the evolutionary history of the species in the tree. Since modern genetic sequences are essentially a variation of ancient ones, access to ancient sequences may identify other variations and organisms which could have arisen from those sequences. In addition to genetic sequences, one might attempt to track the changing of one character trait to another, such as fins turning to legs.

<span class="mw-page-title-main">Shovel-shaped incisors</span> Possible shape of human incisor teeth

Shovel-shaped incisors are incisors whose lingual surfaces are scooped as a consequence of lingual marginal ridges, crown curvature, or basal tubercles, either alone or in combination.

In phylogenetics, basal is the direction of the base of a rooted phylogenetic tree or cladogram. The term may be more strictly applied only to nodes adjacent to the root, or more loosely applied to nodes regarded as being close to the root. Note that extant taxa that lie on branches connecting directly to the root are not more closely related to the root than any other extant taxa.

<span class="mw-page-title-main">Leptothecata</span> Order of cnidarians with hydrothecae

Leptothecata, or thecate hydroids, are an order of hydrozoans in the phylum Cnidaria. Their closest living relatives are the athecate hydroids, which are similar enough to have always been considered closely related, and the very apomorphic Siphonophorae, which were placed outside the "Hydroida". Given that there are no firm rules for synonymy for high-ranked taxa, alternative names like Leptomedusa, Thecaphora or Thecata, with or without the ending emended to "-ae", are also often used for Leptothecata.

<i>Ocepeia</i> Extinct Afrotherian mammal

Ocepeia is an extinct genus of afrotherian mammal that lived in present-day Morocco during the middle Paleocene epoch, approximately 60 million years ago. First named and described in 2001, the type species is O. daouiensis from the Selandian stage of Morocco's Ouled Abdoun Basin. A second, larger species, O. grandis, is known from the Thanetian, a slightly younger stage in the same area. In life, the two species are estimated to have weighed about 3.5 kg (7.7 lb) and 10 kg (22 lb), respectively, and are believed to have been specialized leaf-eaters. The fossil skulls of Ocepeia are the oldest known afrotherian skulls, and the best-known of any Paleocene mammal in Africa.

<span class="mw-page-title-main">Beringian wolf</span> Extinct type of wolf that lived during the Ice Age in Alaska, Yukon, and northern British Columbia

The Beringian wolf is an extinct population of wolf that lived during the Ice Age. It inhabited what is now modern-day Alaska, Yukon, and northern British Columbia. Some of these wolves survived well into the Holocene. The Beringian wolf is an ecomorph of the gray wolf and has been comprehensively studied using a range of scientific techniques, yielding new information on their prey species and feeding behaviors. It has been determined that these wolves are morphologically distinct from modern North American wolves and genetically basal to most modern and extinct wolves. The Beringian wolf has not been assigned a subspecies classification and its relationship with the extinct European cave wolf is not clear.

<span class="mw-page-title-main">Pleistocene coyote</span> Extinct subspecies of carnivore

The Pleistocene coyote, also known as the Ice Age coyote, is an extinct subspecies of coyote that lived in western North America during the Late Pleistocene era. Most remains of the subspecies were found in southern California, though at least one was discovered in Idaho. It was part of a North American carnivore guild that included other canids like foxes, gray wolves, and dire wolves. Some studies suggest that the Pleistocene "coyote" was not in fact a coyote, but rather an extinct western population of the red wolf.

<span class="mw-page-title-main">Pleistocene wolf</span> Extinct lineage of the grey wolf

The Pleistocene wolf, also referred to as the Late Pleistocene wolf, is an extinct lineage or ecomorph of the grey wolf. It was a Late Pleistocene 129 Ka – early Holocene 11 Ka hypercarnivore. While comparable in size to a big modern grey wolf, it possessed a shorter, broader palate with large carnassial teeth relative to its overall skull size, allowing it to prey and scavenge on Pleistocene megafauna. Such an adaptation is an example of phenotypic plasticity. It was once distributed across the northern Holarctic. Phylogenetic evidence indicates that despite being much smaller than the prehistoric wolf, the Japanese wolf, which went extinct in the early 20th century, was of a Pleistocene wolf lineage, thus extending its survival to several millennia after its previous estimated extinction around 7,500 years ago.

<span class="mw-page-title-main">Evolution of the wolf</span>

The evolution of the wolf occurred over a geologic time scale of at least 300 thousand years. The grey wolf Canis lupus is a highly adaptable species that is able to exist in a range of environments and which possesses a wide distribution across the Holarctic. Studies of modern grey wolves have identified distinct sub-populations that live in close proximity to each other. This variation in sub-populations is closely linked to differences in habitat – precipitation, temperature, vegetation, and prey specialization – which affect cranio-dental plasticity.

This glossary of genetics and evolutionary biology is a list of definitions of terms and concepts used in the study of genetics and evolutionary biology, as well as sub-disciplines and related fields, with an emphasis on classical genetics, quantitative genetics, population biology, phylogenetics, speciation, and systematics. Overlapping and related terms can be found in Glossary of cellular and molecular biology, Glossary of ecology, and Glossary of biology.

<i>Canis mosbachensis</i> Extinct species of carnivore

Canis mosbachensis, sometimes known as the Mosbach wolf, is an extinct small wolf that once inhabited Eurasia from the Middle Pleistocene era to the Late Pleistocene. It is widely accepted as the ancestor of Canis lupus, the grey wolf.

<i>Halecium halecinum</i> Species of hydrozoan

Halecium halecinum, commonly known as the herring-bone hydroid, is a species of hydrozoan in the family Haleciidae. It is native to the eastern Atlantic Ocean, the western Atlantic Ocean and the eastern Pacific Ocean.

<i>Obelia dichotoma</i> Species of hydrozoan

Obelia dichotoma is a broadly distributed, mainly marine but sometimes freshwater, colonial hydrozoan in the order Leptothecata that forms regular branching stems and a distinctive hydrotheca. O. dichotoma can be found in climates from the arctic to the tropics in protected waters such as marches and creeks but not near open coasts like beaches in depths up to 250m. O. dichotoma uses asexual and sexual reproduction and feeds on mainly zooplankton and fecal pellets. Obelia dichotoma has a complex relationship with the ecosystem and many economic systems.

<span class="mw-page-title-main">Dmanisi hominins</span> Hominid species or subspecies discovered in Dmanisi, Georgia

The Dmanisi hominins, Dmanisi people, or Dmanisi man were a population of Early Pleistocene hominins whose fossils have been recovered at Dmanisi, Georgia. The fossils and stone tools recovered at Dmanisi range in age from 1.85 to 1.77 million years old, making the Dmanisi hominins the earliest well-dated hominin fossils in Eurasia and the best preserved fossils of early Homo from a single site so early in time, though earlier fossils and artifacts have been found in Asia. Though their precise classification is controversial and disputed, the Dmanisi fossils are highly significant within research on early hominin migrations out of Africa. The Dmanisi hominins are known from over a hundred postcranial fossils and five famous well-preserved skulls, referred to as Dmanisi Skulls 1–5.

Cultural hitchhiking is a hypothesized gene-culture coevolutionary process through which cultural selection, sexual selection based on cultural preference, limits the diversity at genetically neutral loci being transmitted in parallel to selective cultural traits. The process is thought to account for exceptionally low diversity in neutral loci such as control regions of the mitochondrial genome unaccounted for by any other selective forces. Simply put, selection for certain learned social and cultural behaviors can manifest in specific shaping of a population’s genetic makeup. While the notion that culture plays a significant role in shaping community genetics is widely accepted in the context of human populations it had not been considered or documented in non-human organisms until the late 1990s. The term was coined by the cetologist Hal Whitehead who studies the cultures and population genetics of matrilineal whale communities.

References

  1. 1 2 "Obelia geniculata (Linnaeus, 1758)". www.gbif.org. Retrieved 18 October 2021.
  2. 1 2 3 Govindarajan, AF; Halanych, KM; Cunningham, CW (17 August 2004). "Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria)" (PDF). Retrieved 7 November 2022.
  3. 1 2 Cunha, Amanda; Collins, Allen; Marques, Antonio (20 November 2019). "When morphometry meets taxonomy: morphological variation and species boundaries in Proboscoida (Cnidaria: Hydrozoa)". Zoological Journal of the Linnean Society. 190: 417–447.