In mathematics, an octonion algebra or Cayley algebra over a field F is a composition algebra over F that has dimension 8 over F. In other words, it is a 8-dimensional unital non-associative algebra A over F with a non-degenerate quadratic form N (called the norm form) such that
for all x and y in A.
The most well-known example of an octonion algebra is the classical octonions, which are an octonion algebra over R, the field of real numbers. The split-octonions also form an octonion algebra over R. Up to R-algebra isomorphism, these are the only octonion algebras over the reals. The algebra of bioctonions is the octonion algebra over the complex numbers C.
The octonion algebra for N is a division algebra if and only if the form N is anisotropic. A split octonion algebra is one for which the quadratic form N is isotropic (i.e., there exists a non-zero vector x with N(x) = 0). Up to F-algebra isomorphism, there is a unique split octonion algebra over any field F. [1] When F is algebraically closed or a finite field, these are the only octonion algebras over F.
Octonion algebras are always non-associative. They are, however, alternative algebras, alternativity being a weaker form of associativity. Moreover, the Moufang identities hold in any octonion algebra. It follows that the invertible elements in any octonion algebra form a Moufang loop, as do the elements of unit norm.
The construction of general octonion algebras over an arbitrary field k was described by Leonard Dickson in his book Algebren und ihre Zahlentheorie (1927) (Seite 264) and repeated by Max Zorn. [2] The product depends on selection of a γ from k. Given q and Q from a quaternion algebra over k, the octonion is written q + Qe. Another octonion may be written r + Re. Then with * denoting the conjugation in the quaternion algebra, their product is
Zorn's German language description of this Cayley–Dickson construction contributed to the persistent use of this eponym describing the construction of composition algebras.
Cohl Furey has proposed that octonion algebras can be utilized in an attempt to reconcile components of the Standard Model. [3]
It is a theorem of Adolf Hurwitz that the F-isomorphism classes of the norm form are in one-to-one correspondence with the isomorphism classes of octonion F-algebras. Moreover, the possible norm forms are exactly the Pfister 3-forms over F. [4]
Since any two octonion F-algebras become isomorphic over the algebraic closure of F, one can apply the ideas of non-abelian Galois cohomology. In particular, by using the fact that the automorphism group of the split octonions is the split algebraic group G2, one sees the correspondence of isomorphism classes of octonion F-algebras with isomorphism classes of G2-torsors over F. These isomorphism classes form the non-abelian Galois cohomology set . [5]
In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.
In mathematics, the octonions are a normed division algebra over the real numbers, a kind of hypercomplex number system. The octonions are usually represented by the capital letter O, using boldface O or blackboard bold . Octonions have eight dimensions; twice the number of dimensions of the quaternions, of which they are an extension. They are noncommutative and nonassociative, but satisfy a weaker form of associativity; namely, they are alternative. They are also power associative.
In mathematics, the Cayley–Dickson construction, sometimes also known as the Cayley–Dickson process or the Cayley–Dickson procedure produces a sequence of algebras over the field of real numbers, each with twice the dimension of the previous one. It is named after Arthur Cayley and Leonard Eugene Dickson. The algebras produced by this process are known as Cayley–Dickson algebras, for example complex numbers, quaternions, and octonions. These examples are useful composition algebras frequently applied in mathematical physics.
In mathematics, a global field is one of two types of fields that are characterized using valuations. There are two kinds of global fields:
In mathematics, a quaternion algebra over a field F is a central simple algebra A over F that has dimension 4 over F. Every quaternion algebra becomes a matrix algebra by extending scalars, i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.
In mathematics, the Milnor conjecture was a proposal by John Milnor of a description of the Milnor K-theory (mod 2) of a general field F with characteristic different from 2, by means of the Galois cohomology of F with coefficients in Z/2Z. It was proved by Vladimir Voevodsky.
In mathematics, a field F is called quasi-algebraically closed if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper ; and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper. The idea itself is attributed to Lang's advisor Emil Artin.
In mathematics, a composition algebraA over a field K is a not necessarily associative algebra over K together with a nondegenerate quadratic form N that satisfies
In mathematics, the split-octonions are an 8-dimensional nonassociative algebra over the real numbers. Unlike the standard octonions, they contain non-zero elements which are non-invertible. Also the signatures of their quadratic forms differ: the split-octonions have a split signature (4,4) whereas the octonions have a positive-definite signature (8,0).
In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field.
A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), (a(bc))d and a(b(cd)) may all yield different answers.
In mathematics, a Pfister form is a particular kind of quadratic form, introduced by Albrecht Pfister in 1965. In what follows, quadratic forms are considered over a field F of characteristic not 2. For a natural number n, an n-fold Pfister form over F is a quadratic form of dimension 2n that can be written as a tensor product of quadratic forms
In mathematics, an Albert algebra is a 27-dimensional exceptional Jordan algebra. They are named after Abraham Adrian Albert, who pioneered the study of non-associative algebras, usually working over the real numbers. Over the real numbers, there are three such Jordan algebras up to isomorphism. One of them, which was first mentioned by Pascual Jordan, John von Neumann, and Eugene Wigner and studied by Albert (1934), is the set of 3×3 self-adjoint matrices over the octonions, equipped with the binary operation
In mathematics, Jean-Pierre Serre conjectured the following statement regarding the Galois cohomology of a simply connected semisimple algebraic group. Namely, he conjectured that if G is such a group over a perfect field F of cohomological dimension at most 2, then the Galois cohomology set H1(F, G) is zero.
In mathematics, the norm residue isomorphism theorem is a long-sought result relating Milnor K-theory and Galois cohomology. The result has a relatively elementary formulation and at the same time represents the key juncture in the proofs of many seemingly unrelated theorems from abstract algebra, theory of quadratic forms, algebraic K-theory and the theory of motives. The theorem asserts that a certain statement holds true for any prime and any natural number . John Milnor speculated that this theorem might be true for and all , and this question became known as Milnor's conjecture. The general case was conjectured by Spencer Bloch and Kazuya Kato and became known as the Bloch–Kato conjecture or the motivic Bloch–Kato conjecture to distinguish it from the Bloch–Kato conjecture on values of L-functions. The norm residue isomorphism theorem was proved by Vladimir Voevodsky using a number of highly innovative results of Markus Rost.
Aleksandr Sergeyevich Merkurjev is a Russian-American mathematician, who has made major contributions to the field of algebra. Currently Merkurjev is a professor at the University of California, Los Angeles.
In mathematics, the Arason invariant is a cohomological invariant associated to a quadratic form of even rank and trivial discriminant and Clifford invariant over a field k of characteristic not 2, taking values in H3(k,Z/2Z). It was introduced by (Arason 1975, Theorem 5.7).
In mathematics, a cohomological invariant of an algebraic group G over a field is an invariant of forms of G taking values in a Galois cohomology group.
In mathematics, a bioctonion, or complex octonion, is a pair (p,q) where p and q are biquaternions.