Oilfield scale inhibition

Last updated

Oilfield scale inhibition is the process of preventing the formation of scale from blocking or hindering fluid flow through pipelines, valves, and pumps used in oil production and processing. Scale inhibitors (SIs) are a class of specialty chemicals that are used to slow or prevent scaling in water systems. [1] [2] Oilfield scaling is the precipitation and accumulation of insoluble crystals (salts) from a mixture of incompatible aqueous phases in oil processing systems. [2] Scale is a common term in the oil industry used to describe solid deposits that grow over time, blocking and hindering fluid flow through pipelines, valves, pumps etc. with significant reduction in production rates and equipment damages. [2] [3] Scaling represents a major challenge for flow assurance in the oil and gas industry. Examples of oilfield scales are calcium carbonate (limescale), iron sulfides, barium sulfate and strontium sulfate. Scale inhibition encompasses the processes or techniques employed to treat scaling problems. [2]

Contents

Background

Scale build-up effectively decreases pipeline diameter and reduces flow rate Limescale-in-pipe.jpg
Scale build-up effectively decreases pipeline diameter and reduces flow rate

The three prevailing water-related problems that upset oil companies today are corrosion, gas hydrates and scaling in production systems. [2] [4] The reservoir water has a high composition of dissolved minerals equilibrated over millions of years at constant physicochemical conditions. As the reservoir fluids are pumped from the ground, changes in temperature, pressure and chemical composition shift the equilibria and cause precipitation and deposition of sparingly soluble salts that build up over time with the potential of blocking vital assets in the oil production setups. [5] Scaling can occur at all stages of oil/gas production systems (upstream, midstream and downstream) and causes blockages of well-bore perforations, casing, pipelines, pumps, valves etc. Severe scaling issues have been reported in Russia and certain North Sea production systems. [6]

Types of scales

Two main classifications of scales are known; inorganic and organic scales and the two types are mutually inclusive, occurring simultaneously in the same system, referred to as mixed scale. [4] [5] Mixed scales may result in highly complex structured scales that are difficult to treat. Such scales require aggressive, severe and sometimes costly remediation techniques. [4] Paraffin wax, asphaltenes and gas hydrates are the most often encountered organic scales in the oil industry. This article focuses on the simplest and common form of scales encountered; inorganic scales.

Inorganic scale

Inorganic scales refer to mineral deposits that occur when the formation water mixes with different brines such as injection water. The mixing changes causes reaction between incompatible ions and changes the thermodynamic and equilibrium state of the reservoir fluids. Supersaturation and subsequent deposition of the inorganic salts occur. The most common types of inorganic scales known to the oil/gas industry are carbonates and sulfates; sulfides and chlorites are often encountered.

While the solubility of most inorganic salts (NaCl, KCl, ...) increases with temperature (endothermic dissolution reaction), some inorganic salts such as calcium carbonate and calcium sulfate have also a retrograde solubility, i.e., their solubility decreases with temperature. In the case of calcium carbonate, it is due to the degassing of CO2 whose solubility decreases with temperature as is the case for most of the gases (exothermic dissolution reaction in water). In calcium sulfate, the reason is that the dissolution reaction of calcium sulfate itself is exothermic and therefore is favored when the temperature decreases (then, the dissolution heat is more easily evacuated; see Le Chatelier's principle). In other terms, the solubility of calcium carbonate and calcium sulfate increases at low temperature and decreases at high temperature, as it is also the case for calcium hydroxide (portlandite), often cited as a didactic case study to explain the reason of retrograde solubility.

NameChemical FormulaMineral
Calcium carbonate CaCO3 Calcite, aragonite
Calcium sulfate CaSO4 Anhydrite, gypsum (CaSO4 · 2 H2O), bassanite (hemihydrate form) (CaSO4 · 0.5 H2O)
Calcium oxalate CaC2O4 Beerstone
Barium sulfate BaSO4 Barite
Magnesium hydroxide Mg(OH)2 Brucite
Magnesium oxide MgO Periclase
Silicates Me(SinOx) · y H2OSerpentine, acmite, gyrolite, gehlenite, amorphous silica, quartz, cristobalite, pectolite
Aluminium oxy-hydroxides AlO(OH) Boehmite, gibbsite, diaspore, corundum
Aluminosilicates AlxSiyOz Analcite, cancrinite, noselite
Copper CuMetallic copper, cuprite (Cu2O), tenorite (Cu )
Magnetite Fe3O4Fe2+ and Fe3+ mixed oxide: FeO + Fe2O3
Nickel ferrite NiFe2O4 Trevorite, Ni2+ and Fe3+ mixed oxide: NiO + Fe2O3
Phosphates Ca10(PO4)6(OH)2 Hydroxyapatite

Calcium carbonate scale

Water, noted for its high solvation power can dissolve certain gases such as carbon dioxide (CO2) to form aqueous CO2(aq). Under the right conditions of temperature and/or pressure, H2O and CO2(aq) molecules react to yield carbonic acid (H2CO3) whose solubility increases at low temperature and high pressure. The slightest changes in pressure and temperature dissolves H2CO3(aq) in water according to equation (3) to form hydronium and bicarbonate (HCO3(aq)) ions.

  1. CO2(aq) + H2O(l) ↔ H2CO3(aq)
  2. H2CO3(aq) ↔ H+(aq) + HCO3(aq)
  3. 2 HCO3(aq) ↔ CO32−(aq) + H2O(l) + CO2(g)
  4. Ca2+(aq) + CO32−(aq) ↔ CaCO3(s)

The two reactions (2) and (4) describe the equilibrium between bicarbonate ions (HCO3), which are highly soluble in water and calcium carbonate (CaCO3) salt. According to Le Chatelier's principle, drilling operations and extraction of the oil from the well bore decreases the pressure of the formation and the equilibrium shifts to the right (3) to increase the production of CO2 to offset the change in pressure. After years of oil production, wells may experience significant pressure drops resulting in large CaCO3 deposits as the equilibrium shifts to offset the pressure changes. [4]

Sulfate scales

Sulfates of Group (II) metal ions (M2+), generally decrease in solubility down the group. The most difficult scales to remove are those of Barium sulfate because of its high insolubility forming very hard scale deposits. A general representation of the reaction is summarized in reaction:

5. M2+(aq) + SO42−(aq) → MSO4(s)

Sulfate scale usually forms when formation water and injected seawater mix together. [2] The relationship between these and the degree of supersaturation is crucial in estimating the amount of sulfate salts that will precipitate in the system. [7] Seawater has a high concentration of sulfate ions and mixing with formation water with many Ca2+ and other M2+ ions in the formation water. Severe problems with sulfate scale are common in reservoirs where seawater has been injected to enhance oil recovery. [2]

Due to its relatively high solubility in water, Calcium sulfate is the easiest sulfate scale to remove chemically as compared to strontium and barium sulfate. [2] Scale crystals are initially dispersed in production systems until accumulation of stable crystals of insoluble sulfates and scale growth occur at nucleation centers. [8] Uneven pipeline surfaces and production equipment such as pumps and valves cause rapid scale growth to levels that can block pipelines. [4]

The scaling-tendency of an oil-well can be predicted based on the prevailing conditions such as pH, temperature, pressure, ionic strength and the mole fraction of CO2 in the vapor and aqueous phases. [9] For instance the saturation index for CaCO3 scale is calculated using the formula;

Fs= {[Ca2+][CO32−]}/Ksp

Where Fs is the scale saturation ratio, defined as the ratio of the activity product to the solubility product of the salt. Activity is defined as the product of the activity coefficients and the concentrations of Ca2+ and SO42− ions. The ionic strength is a measure of the concentration of the dissociated ions dissolved in water also called as “total dissolved solids” (TDS). [9]

Scale remediation

Different oilfield scale remediation techniques are known but majority are based on three basic themes:

  1. Sulfate ion sequestering from sea injection waters
  2. Chemical or mechanical Scale removal/dissolution
  3. Application of Scale Inhibitors (SIs) for scale prevention

The first two methods may be used for short-term treatment and effective for mild-scaling conditions, [2] however, continuous injection or chemical scale squeeze treatment with SIs have been proven over the years to be the most efficient and cost-effective preventative technique. [10]

Scale inhibitors

Chemical Structure of Diethylenetriaminepenta(methylene-phosphonic acid) DTPMP.png
Chemical Structure of Diethylenetriaminepenta(methylene-phosphonic acid)

Scale inhibitors are specialty chemicals that are added to oil production systems to delay, reduce and/or prevent scale deposition. [4] acrylic acid polymers, maleic acid polymers and phosphonates have been used extensively for scale treatment in water systems due to their excellent solubility, thermal stability and dosage efficiency. [11] [12] In the water treatment industry, the major classes of SIs have inorganic phosphate, organophosphorous and organic polymer backbones and common examples are PBTC (phosphonobutane-1,2,4-tricarboxylic acid), ATMP (amino-trimethylene phosphonic acid) and HEDP (1-hydroxyethylidene-1,1-diphosphonic acid), polyacrylic acid (PAA), phosphinopolyacrylates (such as PPCA), polymaleic acids (PMA), maleic acid terpolymers (MAT), sulfonic acid copolymers, such as SPOCA (sulfonated phosphonocarboxylic acid), polyvinyl sulfonates. Two common oilfield mineral SIs are Poly-Phosphono Carboxylic acid (PPCA) and Diethylenetriamine- penta (methylene phosphonic acid) (DTPMP). [13]

Inhibition of calcium carbonate scale deposition and crystal studies of its polymorphs have been conducted. [14] [15] [16] Different SIs are designed for specific scaling conditions and biodegradability properties. [14] The inhibitor molecules essentially bind ions in aqueous phase of production fluids that could potentially precipitate as scales. For instance, to bind positively charged ions in the water, anions must be present in the inhibitor molecular backbone structure and vice versa. Group (II) metal ions are commonly sequestered by SIs with the following functionalities; [4]

- Phosphonate ions (-PO3H)

- Phosphate ions (-OPO3H)

- Phosphonate ions (-PO2H)

- Sulphonate ions (-SO3)

- Carboxylate ions (-CO2)

A SI with a combination of two or more of these functional groups is more efficient in managing scale problems. Usually the sodium salts of the carboxylic derivatives are synthesized as the anionic derivatives and are known to be the most effective due to their high solubilities. [4] Interactions of these functional groups tend to prevent the crystal growth sites using dissociated or un-dissociated groups. The dissociation state is determined by the pH of the system, hence knowledge of the pKa values of the chemicals are important for different pH environments. [17] Again, the inhibition efficiency of the SI depends on its compatibility with other production chemicals such as corrosion inhibitors. [18]

Environmental considerations

Generally, the environmental impacts of SIs are complicated further by combination of other chemicals applied through exploratory, drilling, well-completion and start-up operations. Produced fluids, and other wastes from oil and gas operations with high content of different toxic compounds are hazardous and harmful to human health, water supplies, marine and freshwater organisms. [19] [20] For instance trails of increased turbidity resulting from oil and gas exploratory activities on the eastern shelf of Sakhalin in Russia have been reported with consequential adverse effects on salmon, cod and littoral amphipods. [21]

Efforts to develop more environmentally friendly SIs have been made since the late 1990s and an increasing number of such SIs are becoming commercially available. [4] Recent environmental awareness over the past 15 years has resulted in the production and application of more environmentally friendly SIs, otherwise called 'Green Scale Inhibitors' (GSI). [22] These GSIs are designed to have reduced bio-accumulating and high biodegradability properties and therefore reduce pollution of the waters around oil production systems. [4] [22] [23] Phosphate ester SIs, commonly employed for treating calcium carbonate scales are known to be environmentally friendly but poor inhibition efficiency. [23] Release of SIs containing Nitrogen and Phosphorus distorts the natural equilibrium of the immediate water body with adverse effects on aquatic life. [23]

Another alternative, polysaccharide SIs meet the requirements for environmentally friendly materials; they contain no Phosphorus or Nitrogen and are noted for their non-toxic, renewable, and biodegradable properties. [24] [25] Carboxymethyl inulin (CMI), which is isolated from the roots of Inula helenium has been used in oil exploration and its very low toxicity [26] and crystal growth inhibition power [27] has been reported for treating calcite scales. [28] Examples of poorly biodegradable SIs such as the amino-phosphonate and acrylate-based SIs are being phased-out by stringent environmental regulations as demonstrated in the North sea by Norway zero discharge policy. [21]

Another modern alternative to SI use for environmental protection is the development of materials or coatings that intrinsically resist formation of inorganic scale to begin with. A variety of strategies can be used to accomplish this aim, including engineering of wettability properties and engineering of epitaxial properties to prevent mineral growth or to make minerals easier to remove following growth. Recent work has demonstrated that some classes of hydrophobic and superhydrophobic surfaces can cause self-ejection of scale grown during evaporation [29]

Related Research Articles

<span class="mw-page-title-main">Carbonate</span> Salt or ester of carbonic acid

A carbonate is a salt of carbonic acid, H2CO3, characterized by the presence of the carbonate ion, a polyatomic ion with the formula CO2−3. The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate groupO=C(−O−)2.

<span class="mw-page-title-main">Salt (chemistry)</span> Chemical compound involving ionic bonding

In chemistry, a salt or ionic compound is a chemical compound consisting of an assembly of positively charged ions (cations) and negatively charged ions (anions), which results in a compound with no net electric charge. The constituent ions are held together by electrostatic forces termed ionic bonds.

<span class="mw-page-title-main">Calcium carbonate</span> Chemical compound

Calcium carbonate is a chemical compound with the chemical formula CaCO3. It is a common substance found in rocks as the minerals calcite and aragonite, most notably in chalk and limestone, eggshells, gastropod shells, shellfish skeletons and pearls. Materials containing much calcium carbonate or resembling it are described as calcareous. Calcium carbonate is the active ingredient in agricultural lime and is produced when calcium ions in hard water react with carbonate ions to form limescale. It has medical use as a calcium supplement or as an antacid, but excessive consumption can be hazardous and cause hypercalcemia and digestive issues.

Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.

<span class="mw-page-title-main">Sodium carbonate</span> Chemical compound

Sodium carbonate is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield alkaline solutions in water. Historically, it was extracted from the ashes of plants grown in sodium-rich soils, and because the ashes of these sodium-rich plants were noticeably different from ashes of wood, sodium carbonate became known as "soda ash". It is produced in large quantities from sodium chloride and limestone by the Solvay process, as well as by carbonating sodium hydroxide which is made using the Chlor-alkali process.

<span class="mw-page-title-main">Magnesium carbonate</span> Chemical compound

Magnesium carbonate, MgCO3, is an inorganic salt that is a colourless or white solid. Several hydrated and basic forms of magnesium carbonate also exist as minerals.

<span class="mw-page-title-main">Calcium hydroxide</span> Inorganic compound of formula Ca(OH)2

Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca(OH)2. It is a colorless crystal or white powder and is produced when quicklime (calcium oxide) is mixed with water. Approximately 125M tons/y are produced worldwide.

<span class="mw-page-title-main">Magnesium chloride</span> Inorganic salt: MgCl2 and its hydrates

Magnesium chloride is an inorganic compound with the formula MgCl2. It forms hydrates MgCl2·nH2O, where n can range from 1 to 12. These salts are colorless or white solids that are highly soluble in water. These compounds and their solutions, both of which occur in nature, have a variety of practical uses. Anhydrous magnesium chloride is the principal precursor to magnesium metal, which is produced on a large scale. Hydrated magnesium chloride is the form most readily available.

<span class="mw-page-title-main">Calcium sulfate</span> Laboratory and industrial chemical

Calcium sulfate (or calcium sulphate) is the inorganic compound with the formula CaSO4 and related hydrates. In the form of γ-anhydrite (the anhydrous form), it is used as a desiccant. One particular hydrate is better known as plaster of Paris, and another occurs naturally as the mineral gypsum. It has many uses in industry. All forms are white solids that are poorly soluble in water. Calcium sulfate causes permanent hardness in water.

<span class="mw-page-title-main">Sodium sulfate</span> Chemical compound with formula Na2SO4

Sodium sulfate (also known as sodium sulphate or sulfate of soda) is the inorganic compound with formula Na2SO4 as well as several related hydrates. All forms are white solids that are highly soluble in water. With an annual production of 6 million tonnes, the decahydrate is a major commodity chemical product. It is mainly used as a filler in the manufacture of powdered home laundry detergents and in the Kraft process of paper pulping for making highly alkaline sulfides.

<span class="mw-page-title-main">Barium chloride</span> Chemical compound

Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl2·2H2O, which are colourless crystals with a bitter salty taste. It has limited use in the laboratory and industry.

<span class="mw-page-title-main">Fouling</span> Accumulation of unwanted material on solid surfaces

Fouling is the accumulation of unwanted material on solid surfaces. The fouling materials can consist of either living organisms or a non-living substance (inorganic). Fouling is usually distinguished from other surface-growth phenomena in that it occurs on a surface of a component, system, or plant performing a defined and useful function and that the fouling process impedes or interferes with this function.

<span class="mw-page-title-main">Lithium sulfate</span> Chemical compound

Lithium sulfate is a white inorganic salt with the formula Li2SO4. It is the lithium salt of sulfuric acid.

<span class="mw-page-title-main">Strontium sulfate</span> Chemical compound

Strontium sulfate (SrSO4) is the sulfate salt of strontium. It is a white crystalline powder and occurs in nature as the mineral celestine. It is poorly soluble in water to the extent of 1 part in 8,800. It is more soluble in dilute HCl and nitric acid and appreciably soluble in alkali chloride solutions (e.g. sodium chloride).

<span class="mw-page-title-main">Alkali soil</span> Soil type with pH > 8.5

Alkali, or Alkaline, soils are clay soils with high pH, a poor soil structure and a low infiltration capacity. Often they have a hard calcareous layer at 0.5 to 1 metre depth. Alkali soils owe their unfavorable physico-chemical properties mainly to the dominating presence of sodium carbonate, which causes the soil to swell and difficult to clarify/settle. They derive their name from the alkali metal group of elements, to which sodium belongs, and which can induce basicity. Sometimes these soils are also referred to as alkaline sodic soils. Alkaline soils are basic, but not all basic soils are alkaline.

<span class="mw-page-title-main">Descaling agent</span> Substance used to remove limescale from surfaces

A descaling agent or chemical descaler is a liquid chemical substance used to remove limescale from metal surfaces in contact with hot water, such as in boilers, water heaters, and kettles. Limescale is either white or brown in colour due to the presence of iron compounds. Glass surfaces may also exhibit scaling stains, as can many ceramic surfaces present in bathrooms and kitchen, and descaling agents can be used safely to remove those stains without affecting the substrate since both ceramics and glass are unreactive to most acids.

Calcium nitrite is an inorganic compound with the chemical formula Ca(NO
2
)
2
. In this compound, as in all nitrites, nitrogen is in a +3 oxidation state. It has many applications such as antifreeze, rust inhibitor of steel and wash heavy oil.

Radium carbonate is a chemical compound of radium, carbon, and oxygen, having the chemical formula RaCO3. It is the radium salt of carbonic acid. It contains radium cations (Ra2+) and carbonate anions (CO2−3). This salt is a highly radioactive, amorphous, white powder that has potential applications in medicine. It is notable for forming disordered crystals at room temperature and for being approximately 10 times more soluble than the corresponding barium carbonate - witherite. Radium carbonate is one of a few radium compounds which has significantly different properties from corresponding barium compounds. Moreover, radium is the only alkaline-earth metal which forms disordered crystals in its carbonate phase. Even though radium carbonate has very low solubility in water, it is soluble in dilute mineral acids and concentrated ammonium carbonate.

<span class="mw-page-title-main">Membrane scaling</span> The article is about "membrane scaling" which is a major challenge in the water treatment of RO.

Membrane scaling is when one or more sparingly soluble salts precipitate and form a dense layer on the membrane surface in reverse osmosis (RO) applications. Figures 1 and 2 show scanning electron microscopy (SEM) images of the RO membrane surface without and with scaling, respectively. Membrane scaling, like other types of membrane fouling, increases energy costs due to higher operating pressure, and reduces permeate water production. Furthermore, scaling may damage and shorten the lifetime of membranes due to frequent membrane cleanings and therefore it is a major operational challenge in RO applications.

An antiscalant is a chemical or pre-treatment chemical that prevents the formation of scale, or crystallized mineral salts, commonly used in water purification systems, pipelines and cooling tower applications. Antiscalants are also known as scale inhibitor agents. Scale formation occurs when the concentration of dissolved salts in water exceeds their solubility limits, leading to the precipitation of these salts onto surfaces as hard deposits. Antiscalants dissolve the substances accumulated near the membrane surface and reduce the rate of fouling. They play a crucial role in preventing scale formation, thus improving the efficiency and longevity of industrial equipment and processes.

References

  1. Alzahrani, Salem; Mohammad, Abdul Wahab (2014-12-01). "Challenges and trends in membrane technology implementation for produced water treatment: A review". Journal of Water Process Engineering. 4: 107–133. doi:10.1016/j.jwpe.2014.09.007.
  2. 1 2 3 4 5 6 7 8 9 W. Frenier, Wayne (2008). Formation, removal, and inhibition of inorganic scale in the oilfield environment. Society of Petroleum Engineers. ISBN   978-1555631406.
  3. Liang, Bin; Pan, Kai; Li, Li; Giannelis, Emmanuel P.; Cao, Bing (2014-08-15). "High performance hydrophilic pervaporation composite membranes for water desalination". Desalination. 347: 199–206. doi:10.1016/j.desal.2014.05.021.
  4. 1 2 3 4 5 6 7 8 9 10 Kelland, M. A. (6 Feb 2014). Production chemicals for the oil and gas industry. CRC press. ISBN   9781439873793.
  5. 1 2 Wayne W Frenier, Murtaza Ziauddin, N. Wolf (Editor), Ryan Hartman (Editor) (2008). Formation, removal, and inhibition of inorganic scale in the oilfield environment. Society of Petroleum Engineers. ISBN   978-1555631406.{{cite book}}: |last= has generic name (help)CS1 maint: multiple names: authors list (link)
  6. Mitchell, R.W; Grist, D.M.; Boyle, M.J. (May 1980). "Chemical Treatments Associated with North Sea Projects". Society of Petroleum Engineers. 32 (5): 904–912. doi:10.2118/7880-PA.
  7. Collins, I.R. (2002-01-01). "A New Model for Mineral Scale Adhesion". All Days. Society of Petroleum Engineers. doi:10.2118/74655-ms. ISBN   9781555639426.{{cite book}}: |journal= ignored (help)
  8. Crabtree, M., Eslinger, D., Fletcher, P., Miller, M., Johnson, A., & King, G. (1999). "Fighting Scale- prevention and removal". Oilfield Review. 11 (3): 30–45.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. 1 2 Oddo, J.E.; Tomson, M.B. (1994-02-01). "Why Scale Forms in the Oil Field and Methods To Predict It". SPE Production & Facilities. 9 (1): 47–54. doi:10.2118/21710-pa. ISSN   1064-668X.
  10. Laing, N.; Graham, G.M.; Dyer, S.J. (2003-01-01). "Barium Sulphate Inhibition in Subsea Systems – the Impact of Cold Seabed Temperatures on the Performance of Generically Different Scale Inhibitor Species". All Days. Society of Petroleum Engineers. doi:10.2118/80229-ms. ISBN   9781555639556.{{cite book}}: |journal= ignored (help)
  11. Amjad, Zahid; Koutsoukos, Petros G. (2014-02-17). "Evaluation of maleic acid based polymers as scale inhibitors and dispersants for industrial water applications". Desalination. 335 (1): 55–63. doi:10.1016/j.desal.2013.12.012.
  12. Shakkthivel, P.; Vasudevan, T. (2006-10-02). "Acrylic acid-diphenylamine sulphonic acid copolymer threshold inhibitor for sulphate and carbonate scales in cooling water systems". Desalination. 197 (1): 179–189. doi:10.1016/j.desal.2005.12.023.
  13. Bezemer, Cornelis; Bauer, Karl A. (1969-04-01). "Prevention of Carbonate Scale Deposition: A Well-Packing Technique with Controlled Solubility Phosphates". Journal of Petroleum Technology. 21 (4): 505–514. doi: 10.2118/2176-pa . ISSN   0149-2136.
  14. 1 2 Shi, Wenyan; Xia, Mingzhu; Lei, Wu; Wang, Fengyun (2013-08-01). "Molecular dynamics study of polyether polyamino methylene phosphonates as an inhibitor of anhydrite crystal". Desalination. 322: 137–143. doi:10.1016/j.desal.2013.05.013.
  15. Fried, Ruth; Mastai, Yitzhak (2012-01-01). "The effect of sulfated polysaccharides on the crystallization of calcite superstructures". Journal of Crystal Growth. 338 (1): 147–151. Bibcode:2012JCrGr.338..147F. doi:10.1016/j.jcrysgro.2011.09.044.
  16. Shi, Wen-Yan; Ding, Cheng; Yan, Jin-Long; Han, Xiang-Yun; Lv, Zhi-Min; Lei, Wu; Xia, Ming-Zhu; Wang, Feng-Yun (2012-04-02). "Molecular dynamics simulation for interaction of PESA and acrylic copolymers with calcite crystal surfaces". Desalination. 291: 8–14. doi:10.1016/j.desal.2012.01.019.
  17. Graham, GM Boak, LS Sorbie, KS (2003). "The influence of formation calcium and magnesium on the effectiveness of generically different barium sulphate oilfield scale inhibitors". Soc Petroleum Eng. 18: 28–44 via Science Citation Index.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. Lawless, T.A.; Bourne, H.M.; Bolton, J.R. (1993-01-01). "Examining the Potential for Corrosion Inhibitor and Scale Inhibitor Compatibility in a Multifunctional Squeeze Strategy". All Days. Society of Petroleum Engineers. doi:10.2118/25167-ms. ISBN   9781555634926.{{cite book}}: |journal= ignored (help)
  19. "Drilling Waste Streams from Offshore Oil and Gas Installations". www.offshore-environment.com. Retrieved 2016-11-22.
  20. Davies, Michael; P. J. B. Scott (2006). Oilfield water technology. NACE International. pp. 523–32. ISBN   978-1-57590-204-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  21. 1 2 Knudsen, B.L.; Hjelsvold, M.; Frost, T.K.; Svarstad, M.B.E.; Grini, P.G.; Willumsen, C.F.; Torvik, H. (2004-01-01). "Meeting the Zero Discharge Challenge for Produced Water". All Days. Society of Petroleum Engineers. doi:10.2118/86671-ms. ISBN   9781555639815.{{cite book}}: |journal= ignored (help)
  22. 1 2 Boak, Lorraine S.; Sorbie, Ken (2010-11-01). "New Developments in the Analysis of Scale Inhibitors". SPE Production & Operations. 25 (4): 533–544. doi:10.2118/130401-pa. ISSN   1930-1855.
  23. 1 2 3 Jordan, Myles M.; Sorhaug, Eyvind; Marlow, David (2012-11-01). "Red vs. Green Scale Inhibitors for Extending Squeeze life--A Case Study From the North Sea, Norwegian Sector--Part II". SPE Production & Operations. 27 (4): 404–413. doi:10.2118/140752-pa. ISSN   1930-1855.
  24. Pro, Danièle; Huguet, Samuel; Arkoun, Mustapha; Nugier-Chauvin, Caroline; Garcia-Mina, José Maria; Ourry, Alain; Wolbert, Dominique; Yvin, Jean-Claude; Ferrières, Vincent (2014-11-04). "From algal polysaccharides to cyclodextrins to stabilize a urease inhibitor" (PDF). Carbohydrate Polymers. 112: 145–151. doi:10.1016/j.carbpol.2014.05.075. PMID   25129728.
  25. Liu, Jun; Willför, Stefan; Xu, Chunlin (2015-01-01). "A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications". Bioactive Carbohydrates and Dietary Fibre. 5 (1): 31–61. doi:10.1016/j.bcdf.2014.12.001.
  26. Johannsen, F. R (2003-01-01). "Toxicological profile of carboxymethyl inulin". Food and Chemical Toxicology. 41 (1): 49–59. doi:10.1016/S0278-6915(02)00213-2. PMID   12453728.
  27. Kirboga, Semra; Öner, Mualla (2013-04-16). "Investigation of calcium carbonate precipitation in the presence of carboxymethyl inulin". CrystEngComm. 15 (18): 3678. doi:10.1039/c3ce27022j. ISSN   1466-8033.
  28. Kırboga, Semra; Öner, Mualla (2012-03-01). "The inhibitory effects of carboxymethyl inulin on the seeded growth of calcium carbonate". Colloids and Surfaces B: Biointerfaces. 91: 18–25. doi:10.1016/j.colsurfb.2011.10.031. PMID   22079106.
  29. McBride, Samantha; Lake, John; Varanasi, Kripa (2023-04-07). "Self-ejection of salts and other foulants from superhydrophobic surfaces to enable sustainable anti-fouling". The Journal of Chemical Physics. 158 (13): 134721. doi: 10.1063/5.0142428 . PMID   37031132.