Omega-amidase

Last updated
Omega-amidase
Omega-Amidase.png
A 3D cartoon depiction of the crystal structure of mouse nitrilase 2.
Identifiers
EC no. 3.5.1.3
CAS no. 9025-19-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, an omega-amidase (EC 3.5.1.3) is an enzyme that catalyzes the chemical reaction

Contents

a monoamide of a dicarboxylic acid + H2O a dicarboxylate + NH3

Thus, the two substrates of this enzyme are monoamide of a dicarboxylic acid and H2O, whereas its two products are dicarboxylate and NH3.

This enzyme belongs to the family of hydrolases, those acting on carbon-nitrogen bonds other than peptide bonds, specifically in linear amides. The systematic name of this enzyme class is omega-amidodicarboxylate amidohydrolase. This enzyme is also called alpha-keto acid-omega-amidase. This enzyme participates in glutamate metabolism and alanine and aspartate metabolism. This enzyme can be found in mammals, plants, and bacteria. [1]

Structure and active site

Omega-amidase has two independent monomers that have structure organizations similar to other nitrilase enzymes found in bacteria. [2] Each monomer has a four layered alpha/beta/beta/alpha conformation. [2] The enzyme is asymmetrical and contains a carbon-nitrogen hydrolase fold. [2]

Theoretical active site based on the proximity of residues of the catalytic triad. Possible Omega-amidase Active Site.png
Theoretical active site based on the proximity of residues of the catalytic triad.

Just as omega-amidase shares a general structure organization as other nitrilases, omega-amidase also contains the same catalytic triad within the active site. This triad of residues includes a nucleophilic cysteine, a glutamate base, and a lysine, all of which are conserved within the structure. [2] In addition to the catalytic triad, omega-amidase also contains a second glutamate that assists in substrate positioning. [3] This second glutamate is why omega-amidase has no activity with glutamine or asparagine, even though they are sized similarly to typical substrates. [4]

Mechanism

Omega amidase catalyzes the deamidation of several different alpha-keto acids into ammonia and metabolically useful carboxylic acids [5] The general mechanism is the same as for other nitrilases: binding of the substrate to the active site, followed by release of ammonia, formation of a thioester intermediate at the cysteine, binding of water and then release of the carboxylic acid product. [3] Specifically, the active site cysteine acts as a nucleophile and binds to the substrate. [6] The catalytic triad glutamate transfers a proton to the amide group to create and release ammonia. [7] The remaining thioester intermediate is stabilized by the lysine and the backbone amino group following the cysteine. [6] This intermediate is attacked by water to form a stable tetrahedral intermediate. [7] This intermediate breaks down to release the carboxylic acid and restore the enzyme. [7]

Biology

Omega-amidase operates in coordination with glutamine transaminase to finish off the methionine salvage cycle in bacteria and plants. [1] In the last step to obtain methionine from α-ketomethylthiobutyrate(KMTB), glutamine transaminase K(GTK) converts glutamine to α-ketoglutaramate(KGM). [1] KGM is the main substrate for omega amidase, but KGM exists mainly in the ring form at physiological conditions. [4] Omega-amidase has a higher affinity for the open linear form of KGM that forms more readily at pH 8.5. [8] GTK catalyzes a reversible reaction, but coupling it with omega-amidase makes the transamination reaction irreversible at physiological conditions. [8]

Due to omega-amidase's ability to convert toxic substrates like KGM into components that can be used by other processes, this enzyme can be considered a repair enzyme. [9] Some such substrates are linked to diseases or conditions such as hyperammonemia. [10] A list of some of the substrates that omega-amidase catalyzes may be found in Table 1.  

Table 1. Substrate/Product pairs catalyzed by omega-amidase
SubstrateProduct
α-Ketoglutaramateα-Ketoglutarate
α-KetosuccinamateOxaloacetate
L-2-HydroxysuccinamateL-Malate
Succinamic AcidSuccinylmonohydroxamic Acid [11]
Glutaramic AcidGlutarylmonohyoxamic Acid [11]

Medical relevance

The NIT2 gene in humans has been found to be identical to omega-amidase. [9] The gene has the highest expression in the liver and kidney, but is also expressed in almost every human tissue. [5] Overexpression of the NIT2 gene results in decreasing cell proliferation and growth in HeLa cells, which indicates that the gene may have a role in tumor suppression. [9] However further studies are necessary to determine the effect on specific cancers, as a study done with colon cancer cells showed that downregulation of NIT2 induced cell cycle arrest. [12] In addition to tumor suppression, NIT2/omega-amidase may be useful for detection and conversion of oncometabolites. [13] Because omega-amidase is able to control concentration of toxic substrates such as KGM, it is likely that NIT2 can serve the same purpose. [13]

Related Research Articles

α-Ketoglutaric acid Chemical compound

α-Ketoglutaric acid is one of two ketone derivatives of glutaric acid. The term "ketoglutaric acid," when not further qualified, almost always refers to the alpha variant. β-Ketoglutaric acid varies only by the position of the ketone functional group, and is much less common.

<span class="mw-page-title-main">Protease</span> Enzyme that cleaves other proteins into smaller peptides

A protease is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in many biological functions, including digestion of ingested proteins, protein catabolism, and cell signaling.

<span class="mw-page-title-main">Pyridoxal phosphate</span> Active form of vitamin B6

Pyridoxal phosphate (PLP, pyridoxal 5'-phosphate, P5P), the active form of vitamin B6, is a coenzyme in a variety of enzymatic reactions. The International Union of Biochemistry and Molecular Biology has catalogued more than 140 PLP-dependent activities, corresponding to ~4% of all classified activities. The versatility of PLP arises from its ability to covalently bind the substrate, and then to act as an electrophilic catalyst, thereby stabilizing different types of carbanionic reaction intermediates.

<span class="mw-page-title-main">Aspartate transaminase</span> Enzyme involved in amino acid metabolism

Aspartate transaminase (AST) or aspartate aminotransferase, also known as AspAT/ASAT/AAT or (serum) glutamic oxaloacetic transaminase, is a pyridoxal phosphate (PLP)-dependent transaminase enzyme that was first described by Arthur Karmen and colleagues in 1954. AST catalyzes the reversible transfer of an α-amino group between aspartate and glutamate and, as such, is an important enzyme in amino acid metabolism. AST is found in the liver, heart, skeletal muscle, kidneys, brain, red blood cells and gall bladder. Serum AST level, serum ALT level, and their ratio are commonly measured clinically as biomarkers for liver health. The tests are part of blood panels.

<span class="mw-page-title-main">Oxaloacetic acid</span> Organic compound

Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO2CC(O)CH2CO2H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes that occur in animals. It takes part in gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, fatty acid synthesis and the citric acid cycle.

<span class="mw-page-title-main">Malate dehydrogenase</span> Class of enzymes

Malate dehydrogenase (EC 1.1.1.37) (MDH) is an enzyme that reversibly catalyzes the oxidation of malate to oxaloacetate using the reduction of NAD+ to NADH. This reaction is part of many metabolic pathways, including the citric acid cycle. Other malate dehydrogenases, which have other EC numbers and catalyze other reactions oxidizing malate, have qualified names like malate dehydrogenase (NADP+).

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Nitrilase</span> Class of enzymes

Nitrilase enzymes catalyse the hydrolysis of nitriles to carboxylic acids and ammonia, without the formation of "free" amide intermediates. Nitrilases are involved in natural product biosynthesis and post translational modifications in plants, animals, fungi and certain prokaryotes. Nitrilases can also be used as catalysts in preparative organic chemistry. Among others, nitrilases have been used for the resolution of racemic mixtures. Nitrilase should not be confused with nitrile hydratase which hydrolyses nitriles to amides. Nitrile hydratases are almost invariably co-expressed with an amidase, which converts the amide to the carboxylic acid. Consequently, it can sometimes be difficult to distinguish nitrilase activity from nitrile hydratase plus amidase activity.

<span class="mw-page-title-main">Transaminase</span> Class of enzymes

Transaminases or aminotransferases are enzymes that catalyze a transamination reaction between an amino acid and an α-keto acid. They are important in the synthesis of amino acids, which form proteins.

<span class="mw-page-title-main">Catalytic triad</span> Set of three coordinated amino acids

A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes. An acid-base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence.

<span class="mw-page-title-main">Isopeptide bond</span>

An isopeptide bond is a type of amide bond formed between a carboxyl group of one amino acid and an amino group of another. An isopeptide bond is the linkage between the side chain amino or carboxyl group of one amino acid to the α-carboxyl, α-amino group, or the side chain of another amino acid. In a typical peptide bond, also known as eupeptide bond, the amide bond always forms between the α-carboxyl group of one amino acid and the α-amino group of the second amino acid. Isopeptide bonds are rarer than regular peptide bonds. Isopeptide bonds lead to branching in the primary sequence of a protein. Proteins formed from normal peptide bonds typically have a linear primary sequence.

<span class="mw-page-title-main">Amino acid synthesis</span> The set of biochemical processes by which amino acids are produced

Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).

<span class="mw-page-title-main">GMP synthase</span>

Guanosine monophosphate synthetase, also known as GMPS is an enzyme that converts xanthosine monophosphate to guanosine monophosphate.

<span class="mw-page-title-main">Aminodeoxychorismate synthase</span>

In enzymology, an aminodeoxychorismate synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Amidase</span>

In enzymology, an amidase (EC 3.5.1.4, acylamidase, acylase (misleading), amidohydrolase (ambiguous), deaminase (ambiguous), fatty acylamidase, N-acetylaminohydrolase (ambiguous)) is an enzyme that catalyzes the hydrolysis of an amide. In this way, the two substrates of this enzyme are an amide and H2O, whereas its two products are monocarboxylate and NH3.

In enzymology, a glutamine-pyruvate transaminase is an enzyme that catalyzes the chemical reaction

Glutaminolysis (glutamine + -lysis) is a series of biochemical reactions by which the amino acid glutamine is lysed to glutamate, aspartate, CO2, pyruvate, lactate, alanine and citrate.

<span class="mw-page-title-main">Dioxygenase</span> Class of enzymes

Dioxygenases are oxidoreductase enzymes. Aerobic life, from simple single-celled bacteria species to complex eukaryotic organisms, has evolved to depend on the oxidizing power of dioxygen in various metabolic pathways. From energetic adenosine triphosphate (ATP) generation to xenobiotic degradation, the use of dioxygen as a biological oxidant is widespread and varied in the exact mechanism of its use. Enzymes employ many different schemes to use dioxygen, and this largely depends on the substrate and reaction at hand.

<span class="mw-page-title-main">Asparagine synthase (glutamine-hydrolysing)</span>

Asparagine synthase (glutamine-hydrolysing) (EC 6.3.5.4, asparagine synthetase (glutamine-hydrolysing), glutamine-dependent asparagine synthetase, asparagine synthetase B, AS, AS-B) is an enzyme with systematic name L-aspartate:L-glutamine amido-ligase (AMP-forming). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">PNGase F</span>

Peptide:N-glycosidase F, commonly referred to as PNGase F, is an amidase of the peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase class. PNGase F works by cleaving between the innermost GlcNAc and asparagine residues of high mannose, hybrid, and complex oligosaccharides from N-linked glycoproteins and glycopeptides. This results in a deaminated protein or peptide and a free glycan.

References

  1. 1 2 3 Ellens KW, Richardson LG, Frelin O, Collins J, Ribeiro CL, Hsieh YF, Mullen RT, Hanson AD (May 2015). "Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants". Phytochemistry. 113: 160–9. doi:10.1016/j.phytochem.2014.04.012. PMID   24837359.
  2. 1 2 3 4 Barglow KT, Saikatendu KS, Bracey MH, Huey R, Morris GM, Olson AJ, Stevens RC, Cravatt BF (December 2008). "Functional proteomic and structural insights into molecular recognition in the nitrilase family enzymes". Biochemistry. 47 (51): 13514–23. doi:10.1021/bi801786y. PMC   2665915 . PMID   19053248.
  3. 1 2 3 Weber BW, Kimani SW, Varsani A, Cowan DA, Hunter R, Venter GA, Gumbart JC, Sewell BT (October 2013). "The mechanism of the amidases: mutating the glutamate adjacent to the catalytic triad inactivates the enzyme due to substrate mispositioning". The Journal of Biological Chemistry. 288 (40): 28514–23. doi:10.1074/jbc.m113.503284. PMC   3789952 . PMID   23946488.
  4. 1 2 Chien CH, Gao QZ, Cooper AJ, Lyu JH, Sheu SY (July 2012). "Structural insights into the catalytic active site and activity of human Nit2/ω-amidase: kinetic assay and molecular dynamics simulation". The Journal of Biological Chemistry. 287 (31): 25715–26. doi:10.1074/jbc.m111.259119. PMC   3406660 . PMID   22674578.
  5. 1 2 Krasnikov BF, Nostramo R, Pinto JT, Cooper AJ (August 2009). "Assay and purification of omega-amidase/Nit2, a ubiquitously expressed putative tumor suppressor, that catalyzes the deamidation of the alpha-keto acid analogues of glutamine and asparagine". Analytical Biochemistry. 391 (2): 144–50. doi:10.1016/j.ab.2009.05.025. PMC   2752201 . PMID   19464248.
  6. 1 2 Stevenson DE, Feng R, Storer AC (December 1990). "Detection of covalent enzyme-substrate complexes of nitrilase by ion-spray mass spectroscopy". FEBS Letters. 277 (1–2): 112–4. doi: 10.1016/0014-5793(90)80821-y . PMID   2269339.
  7. 1 2 3 Thuku RN, Brady D, Benedik MJ, Sewell BT (March 2009). "Microbial nitrilases: versatile, spiral forming, industrial enzymes". Journal of Applied Microbiology. 106 (3): 703–27. doi: 10.1111/j.1365-2672.2008.03941.x . PMID   19040702.
  8. 1 2 Zhang Q, Marsolais F (March 2014). "Identification and characterization of omega-amidase as an enzyme metabolically linked to asparagine transamination in Arabidopsis". Phytochemistry. 99: 36–43. doi:10.1016/j.phytochem.2013.12.020. PMID   24461228.
  9. 1 2 3 Huebner K, Saldivar JC, Sun J, Shibata H, Druck T (2011). "Hits, Fhits and Nits: beyond enzymatic function". Advances in Enzyme Regulation. 51 (1): 208–17. doi:10.1016/j.advenzreg.2010.09.003. PMC   3041834 . PMID   21035495.
  10. Krasnikov BF, Deryabina YI, Isakova EP, Biriukova IK, Shevelev AB, Antipov AN (May 2017). "New recombinant producer of human ω-amidase based on Escherichia coli". Applied Biochemistry and Microbiology. 53 (3): 290–295. doi:10.1134/s0003683817030115.
  11. 1 2 Meister A, Levintow L, Greenfield RE, Abendschein PA (July 1955). "Hydrolysis and transfer reactions catalyzed by omega-amidase preparations". The Journal of Biological Chemistry. 215 (1): 441–60. PMID   14392177.
  12. Zheng B, Chai R, Yu X (May 2015). "Downregulation of NIT2 inhibits colon cancer cell proliferation and induces cell cycle arrest through the caspase-3 and PARP pathways". International Journal of Molecular Medicine. 35 (5): 1317–22. doi: 10.3892/ijmm.2015.2125 . PMID   25738796.
  13. 1 2 Hariharan VA, Denton TT, Paraszcszak S, McEvoy K, Jeitner TM, Krasnikov BF, Cooper AJ (March 2017). "The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites". Biology. 6 (2): 24. doi:10.3390/biology6020024. PMC   5485471 . PMID   28358347.

Further reading