PSpice circuit file

Last updated

A PSpice circuit description file (*.cir) contains the configuration data for circuit simulation with the OrCAD EE PSpice simulator. The simulator processes such files, and generates a simulation result file (*.out), as well as a binary probe data file (*.dat) for viewing waveforms. PSpice Circuit files are typically generated by OrCAD Capture or other schematic capture application, and may also be entered manually in a text editor.

Schematic capture stage of electronic circuit design

Schematic capture or schematic entry is a step in the design cycle of electronic design automation (EDA) at which the electronic diagram, or electronic schematic of the designed electronic circuit is created by a designer. This is done interactively with the help of a schematic capture tool also known as schematic editor.

Text editor Software to modify text documents

A text editor is a type of computer program that edits plain text. Such programs are sometimes known as "notepad" software, following the naming of Microsoft Notepad. Text editors are provided with operating systems and software development packages, and can be used to change files such as configuration files, documentation files and programming language source code.

Contents

The circuit file contains the component netlist, simulation options, analyses statements, and the output control statements. The component netlist comprises a list of all circuit elements, along with the node names connected to their terminals. The netlist topology is converted into an equivalent matrix which is solved to find the circuit state, and is also used to simulation output file.

Types of analyses

The type of simulation performed by PSpice depends on the source specifications and control statements. The analyses usually executed in PSpice are listed below.

DC Analysis

It is used for circuits with time–invariant sources (e.g. steady-state dc sources). It calculates all nodal voltages and branch currents over a range of values. The types of dc sweep analyses and their corresponding .(dot) commands are described below:

All these sweep types can also be nested by adding another set of parameter name and values at the end.

Transient Analysis

It is used for circuits with time variant sources (e.g., sinusoidal sources/switched dc sources). It calculates all nodes voltages and branch currents over a time interval and their instantaneous values are the outputs. The corresponding .(dot) command is as follows: .TRAN <print step value> <final time value> [no-print value [step ceiling value]] [SKIPBP]

AC Analysis

It is used for small signal analysis of circuits with sources of varying frequencies. It calculates the magnitudes and phase angles of all nodal voltages and branch currents over a range of frequencies. The corresponding .(dot) command is as follows: .AC <LIN|DEC|OCT> <Number of points> <Start frequency value> <End frequency value>

Designation of element values

Two types of suffixes are generally used in order to write element values viz., scale suffix and unit suffix. Scale suffixes are upper letters and multiplies the number that it follows. Some of the unit suffixes and scale suffixes normally used are as follows:

Each element in a PSpice circuit must contain a device name (such as Vs, Is, R, etc.) with an appropriate key initial letter. Upper or lower case letter can be used because PSpice is insensitive to case in circuit files. However, PSpice does not allow subscripts or superscripts. IS is thus written as IS, VS as VS and so on. PSpice automatically assigns the corresponding SI unit for each element based on the key letter of its name, so units need not be written after element values. The element values are written in standard floating point notation with unit suffixes, NOT separated by space, this is in contrast to what is required by the SI. E.g. the value of an inductor may be expressed in the netlist as 20mH or 20M. Note that M means ‘milli’ and not ‘mega’. Mega is written as MEG. E.g. 10 Mega ohms may be expressed as 10MEGOHM or just 10Meg.

Designation of nodes

The location of an element is identified by the node numbers since each element is connected between two nodes. PSpice works fundamentally with node voltages, and the circuit description requires node numbers. All nodes must be connected to at least two elements and hence appear twice. Node numbers are integers but need not be sequential in PSpice. Node O is the ground node and all nodes must have a dc path to the ground node. Node voltages are identified by node number. The voltage difference between two nodes may be written as v (node 1, node 2), which stands for v(Node 1) – v(Node 2). If two or more connection points are joined by a zero resistance path, then that combination is treated as a single node. Each element in a .PSpice circuit must connect to nodes that specify the element’s location. Consequently, even a series connection point requires identifiers and can be treated as a node. The reference polarity for node voltage is always positive relative to the node O. PSpice employs the passive combination of all elements, with the first named node taken to be at higher potential.

Designation of circuit elements

Circuit elements are designated by names and the name must start by a letter symbol. After the letter symbol it can contain either letter or numbers up to a total of eight characters. A passive element is described as follows: (element name) (positive node) (negative node) (value)

PSpice employs passive convention of elements, the first named node is taken as higher potential. The reference direction of current through the element goes from the first named node to the second i.e., the positive current flows from the first named node (N+) to the second (N-). If the nodes are interchanged, the direction of the current through the element will be reversed.

Circuit files

The circuit files contain five types of statements, some of which are optional. The statement types are:

It may be noted that for the SPICE/Pspice program, the first line being the title line, it may contain any type of text. The last line being the .END statement, the order of lines in between is irrelevant and does not affect the results of simulation. If any Pspice statement is more than one line, the statement can continue to the next line having a +sign in the first column of the next line. A comment line can be included anywhere proceeded by an (*). Upper or lower case letters may be used for Pspice statements (upper case for SPICE 2). Number of blanks between items is insignificant except in the title line.

Device statements

It includes a user supplied name, the numbers of the nodes to which the element is connected and the element is connected and the element’s value. Independent dc voltage and current sources are described by the following scheme; the required key letter (V or I) are capitalised and is followed by the higher and lower potential node numbers (N+ and N-) respectively. The value is then given and may be +ve or –ve. Except sources, zero values are not allowed. Infinite value of any element is not feasible. Numerical values are expressed in either floating point or fixed point form. The floating point notation for R*10^p is Rep when R is any number and p is a positive or negative number. Alternatively, a number may be followed immediately by any scale factor. Numerical values in device statements may also be specified via expression. The form of statement then includes (expression) where the early brackets enclose a mathematical relation. The mathematical operators are symbolised by:- + (addition) -(subtraction) *(multiplication) /(division).

Control statements

Here the only essential one required is the last line i.e., the end statement. Pspice produces its default output consisting of:

The optional control statement affects the output format and written as : Option (list)(node) (no page) When ‘list’ gives a summary of elements, ‘node’ gives a summary of connection while “no page” suppresses paging. It is usual to include .option no page to conserve paper.

PSpice output

If the Pspice default output does not provide enough information, the circuit file should be augmented to give values of other variables desired. If only the branch current is desired, the default output automatically includes the currents through all independent voltage sources. Accordingly, it is required to incorporate a current – scaling zero voltage source in the appropriate branch. This source has O voltage magnitude and acts like a short. It does not alter the circuits’ behaviour but it requires an additional node number. It is basically a dc dummy voltage source (0V) added to the specify branch and used as an ammeter to measure the current of the source.

To get several branch currents and or voltages, it is possible to use a print control statement having the general form

       .PRINT DC VAR1 VAR2……

Where VAR1, VAR2……… represent all the variables of interest. The default output is not supplied when the ckt file includes a .PRINT DC statement. The .PRINT DC statement should also be accompanied by a source control statement governing the value of an independent voltage or current source. Pspice has capability for printing and plotting of output voltages or currents. For dc sweep and transient analysis, the output voltages and currents can be obtained by the following statements:-

       V(node)  :Voltage at node with respect to ground        V(N1, N2) :Voltage at node N1 with respect to node N2        V(name)         :Voltage across two terminal device        VX(name) :Voltage at terminal x of a three terminal device        VXY(name) :Voltage across terminals x and y of 3 terminal device        VZ  :Voltage at port Z        I(name)  :Through current        IX(name) :Current through terminal x        IZ(name) :Current at port Z

PSpice usually does not allow measuring voltage across a passive element like V(R1), V(C1), V(L1) except when used only for outputs by .PLOT and .PRINT statement. The commands those are available in PSpice simulation to get the output are as follows:-

    (i) .PRINT DC (output variables)

(The maximum number of variables at the output should not be more than eight)

    (ii) .PRINT statement

(however, more than one .PRINT statement can be used to print all desired output variables)

    (iii) .PLOT DC (output variables).

(The results from DC analysis can also be obtained in the form of line printer plots. Maximum eight variables can be obtained in such a statement and more than one .PLOT statement can be given.)

    (iv) .PROBE

(Probe is the graphics waveform analyser and is available in the professional version of PSpice. Once the results of the simulations are processed by .PROBE command, the results are available for graphic displays).

See also

Related Research Articles

In computer engineering, a hardware description language (HDL) is a specialized computer language used to describe the structure and behavior of electronic circuits, and most commonly, digital logic circuits.

Mentor, a Siemens Business is a US-based electronic design automation (EDA) multinational corporation for electrical engineering and electronics.

Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing electronic systems such as integrated circuits and printed circuit boards. The tools work together in a design flow that chip designers use to design and analyze entire semiconductor chips. Since a modern semiconductor chip can have billions of components, EDA tools are essential for their design.

Silvaco

Silvaco, Inc. is a privately owned provider of electronic design automation (EDA) software and TCAD process and device simulation software. Silvaco was founded in 1984 and is headquartered in Santa Clara, California, and in 2006 the company had about 250 employees worldwide.

CADSTAR

CADSTAR is a Windows-based electronic design automation (EDA) software tool for designing and creating schematic diagrams and printed circuit boards (PCBs). It provides engineers with a tool for designing simple or complex, multilayer PCBs. CADSTAR spans schematic capture, variant management, placement, automatic and high-speed routing, signal integrity, power integrity, EMC analysis, design rule checks and production of manufacturing data.

TARGET (CAD software)

TARGET 3001! is a CAD computer program for EDA and PCB design, developed by Ing.-Büro Friedrich in Germany. It supports the design of electronic schematics, PCBs, and device front panels. It runs under Windows and is available in English, German and French.

gEDA electronic design automation software

The term gEDA refers to two things:

  1. A set of software applications used for electronic design released under the GPL. As such, gEDA is an ECAD or EDA application suite. gEDA is mostly oriented towards printed circuit board design. The gEDA applications are often referred to collectively as "the gEDA Suite".
  2. The collaboration of free software/open-source developers who work to develop and maintain the gEDA toolkit. The developers communicate via gEDA mailing lists, and have participated in the annual "Google Summer of Code" event as a single project. This collaboration is often referred to as "the gEDA Project".
Micro-Cap

Micro-Cap is a SPICE compatible analog/digital circuit simulator with an integrated schematic editor that provides an interactive sketch and simulate environment for electronics engineers. It is developed by Spectrum Software and is currently at version 12.

Spectrum Software is a software company based in California, whose main focus is electrical simulation and analysis tools, most notably the circuit simulator Micro-Cap. It was founded in February 1980 by Andy Thompson. Initially, the company concentrated on providing software for Apple II systems.

Quite Universal Circuit Simulator free electronics circuit simulator software

Quite Universal Circuit Simulator (Qucs) is a free-software electronics circuit simulator software released under GPL. It gives you the ability to set up a circuit with a graphical user interface and simulate the large-signal, small-signal and noise behaviour of the circuit. Pure digital simulations are also supported using VHDL and/or Verilog.

NI Multisim electronic schematic capture and simulation program

NI Multisim is an electronic schematic capture and simulation program which is part of a suite of circuit design programs, along with NI Ultiboard. Multisim is one of the few circuit design programs to employ the original Berkeley SPICE based software simulation. Multisim was originally created by a company named Electronics Workbench, which is now a division of National Instruments. Multisim includes microcontroller simulation, as well as integrated import and export features to the Printed Circuit Board layout software in the suite, NI Ultiboard.

Electronic circuit simulation circuit behavior replication; uses mathematical models to replicate the behavior of an actual electronic device or circuit

Electronic circuit simulation uses mathematical models to replicate the behavior of an actual electronic device or circuit. Simulation software allows for modeling of circuit operation and is an invaluable analysis tool. Due to its highly accurate modeling capability, many colleges and universities use this type of software for the teaching of electronics technician and electronics engineering programs. Electronics simulation software engages the user by integrating him or her into the learning experience. These kinds of interactions actively engage learners to analyze, synthesize, organize, and evaluate content and result in learners constructing their own knowledge.

Cadence Design Systems American electronic design automation (EDA) software and engineering services company

Cadence Design Systems, Inc. is an American multinational electronic design automation (EDA) software and engineering services company, founded in 1988 by the merger of SDA Systems and ECAD, Inc. The company produces software, hardware and silicon structures for designing integrated circuits, systems on chips (SoCs) and printed circuit boards.

AWR Corporation is an electronic design automation (EDA) software company, formerly known as Applied Wave Research, and then acquired by National Instruments

Altium Designer electronic design automation software

Altium Designer is a PCB and electronic design automation software package for printed circuit boards. It is developed by Australian software company Altium Limited.

LTspice is freeware computer software implementing a SPICE electronic circuit simulator, produced by semiconductor manufacturer Linear Technology (LTC), now part of Analog Devices. It is used in-house at Linear Technology for IC design, and the most widely distributed and used SPICE program in the industry.

Toolkit for Interactive Network Analysis (TINA) is a SPICE-based electronics design and training software by DesignSoft of Budapest. Its features include analog, digital, and mixed circuit simulations, and printed circuit board (PCB) design.

EasyEDA is a web-based EDA tool suite that enables hardware engineers to design, simulate, share - publicly and privately - and discuss schematics, simulations and printed circuit boards. Other features include the creation of a Bill of Materials, Gerber and pick and place files and documentary outputs in PDF, PNG and SVG formats.

Proteus Design Suite electronic design automation software

The Proteus Design Suite is a proprietary software tool suite used primarily for electronic design automation. The software is used mainly by electronic design engineers and technicians to create schematics and electronic prints for manufacturing printed circuit boards.