Proteus Design Suite

Last updated
Proteus Design Suite
Developer(s) Labcenter Electronics Ltd.
Initial release1988 (1988)
Stable release
8.17
Operating system Windows
Type Electronic design automation
Licence Proprietary
Website www.labcenter.com

The Proteus Design Suite is a proprietary software tool suite used primarily for electronic design automation. The software is used mainly by electronic design engineers and technicians to create schematics and electronic prints for manufacturing printed circuit boards.

Contents

It was developed in Yorkshire, England by Labcenter Electronics Ltd and is available in English, French, Spanish and Chinese languages.

History

The first version of what is now the Proteus Design Suite was called PC-B and was written by the company chairman, John Jameson, for DOS in 1988. Schematic Capture support followed in 1990, with a port to the Windows environment shortly thereafter. Mixed mode SPICE Simulation was first integrated into Proteus in 1996 and microcontroller simulation then arrived in Proteus in 1998. Shape based autorouting was added in 2002 and 2006 saw another major product update with 3D Board Visualisation. More recently, a dedicated IDE for simulation was added in 2011 and MCAD import/export was included in 2015. Support for high speed design was added in 2017. [1] Feature led product releases are typically biannual, while maintenance based service packs are released as it is required.

Product Modules

The Proteus Design Suite is a Windows application for schematic capture, simulation, and PCB (Printed Circuit Board) layout design. It can be purchased in many configurations, depending on the size of designs being produced and the requirements for microcontroller simulation. All PCB Design products include an autorouter and basic mixed mode SPICE simulation capabilities.

Schematic Capture

Schematic capture in the Proteus Design Suite is used for both the simulation of designs and as the design phase of a PCB layout project. It is therefore a core component and is included with all product configurations.

Microcontroller Simulation

The micro-controller simulation in Proteus works by applying either a hex file or a debug file to the microcontroller part on the schematic. It is then co-simulated along with any analog and digital electronics connected to it. This enables its use in a broad spectrum of project prototyping in areas such as motor control, [2] [3] temperature control [4] [5] and user interface design. [6] It also finds use in the general hobbyist community [7] [8] and, since no hardware is required, is convenient to use as a training [9] [10] or teaching tool. [11] [12] Support is available for co-simulation of:

PCB Design

The PCB Layout module is automatically given connectivity information in the form of a netlist from the schematic capture module. It applies this information, together with the user specified design rules and various design automation tools, to assist with error free board design. PCB's of up to 16 copper layers can be produced with design size limited by product configuration.

3D Verification

The 3D Viewer module allows the board under development to be viewed in 3D together with a semi-transparent height plane that represents the boards enclosure. STEP output can then be used to transfer to mechanical CAD software such as Solidworks or Autodesk for accurate mounting and positioning of the board.

See also

Related Research Articles

<span class="mw-page-title-main">Electronics</span> Branch of physics and electrical engineering

Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles. Electronics is a subfield of electrical engineering, but it differs from it in that it focuses on using active devices such as transistors, diodes, and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog to digital. Electronics also encompasses the fields of microelectronics, nanoelectronics, optoelectronics, and quantum electronics, which deal with the fabrication and application of electronic devices at microscopic, nanoscopic, optical, and quantum scales.

Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing electronic systems such as integrated circuits and printed circuit boards. The tools work together in a design flow that chip designers use to design and analyze entire semiconductor chips. Since a modern semiconductor chip can have billions of components, EDA tools are essential for their design; this article in particular describes EDA specifically with respect to integrated circuits (ICs).

<span class="mw-page-title-main">OrCAD</span> Electronic design automation software

OrCAD Systems Corporation was a software company that made OrCAD, a proprietary software tool suite used primarily for electronic design automation (EDA). The software is used mainly by electronic design engineers and electronic technicians to create electronic schematics, and perform mixed-signal simulation and electronic prints for manufacturing printed circuit boards (PCBs). OrCAD was taken over by Cadence Design Systems in 1999 and was integrated with Cadence Allegro in 2005.

<span class="mw-page-title-main">PLECS</span> Simulation software for electrical circuits

PLECS is a software tool for system-level simulations of electrical circuits developed by Plexim. It is especially designed for power electronics but can be used for any electrical network. PLECS includes the possibility to model controls and different physical domains besides the electrical system.

gEDA

The term gEDA refers to two things:

  1. A set of software applications used for electronic design released under the GPL. As such, gEDA is an ECAD or EDA application suite. gEDA is mostly oriented towards printed circuit board design. The gEDA applications are often referred to collectively as "the gEDA Suite".
  2. The collaboration of free software/open-source developers who work to develop and maintain the gEDA toolkit. The developers communicate via gEDA mailing lists, and have participated in the annual "Google Summer of Code" event as a single project. This collaboration is often referred to as "the gEDA Project".

Atmel ARM-based processors are microcontrollers and microprocessors integrated circuits, by Microchip Technology, that are based on various 32-bit ARM processor cores, with in-house designed peripherals and tool support.

<span class="mw-page-title-main">NI Multisim</span> Electronic Software

NI Multisim is an electronic schematic capture and simulation program which is part of a suite of circuit design programs, along with NI Ultiboard. Multisim is one of the few circuit design programs to employ the original Berkeley SPICE based software simulation. Multisim was originally created by a company named Electronics Workbench Group, which is now a division of National Instruments. Multisim includes microcontroller simulation, as well as integrated import and export features to the printed circuit board layout software in the suite, NI Ultiboard.

<span class="mw-page-title-main">NI Ultiboard</span>

NI Ultiboard or formerly ULTIboard is an electronic Printed Circuit Board Layout program which is part of a suite of circuit design programs, along with NI Multisim. One of its major features is the Real Time Design Rule Check, a feature that was only offered on expensive work stations in the days when it was introduced. ULTIboard was originally created by a company named Ultimate Technology, which is now a subsidiary of National Instruments. Ultiboard includes a 3D PCB viewing mode, as well as integrated import and export features to the Schematic Capture and Simulation software in the suite, Multisim.

<span class="mw-page-title-main">Electronic circuit</span> Electrical circuit with active components

An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical circuit and to be referred to as electronic, rather than electrical, generally at least one active component must be present. The combination of components and wires allows various simple and complex operations to be performed: signals can be amplified, computations can be performed, and data can be moved from one place to another.

<span class="mw-page-title-main">Electronic circuit simulation</span>

Electronic circuit simulation uses mathematical models to replicate the behavior of an actual electronic device or circuit. Simulation software allows for modeling of circuit operation and is an invaluable analysis tool. Due to its highly accurate modeling capability, many colleges and universities use this type of software for the teaching of electronics technician and electronics engineering programs. Electronics simulation software engages its users by integrating them into the learning experience. These kinds of interactions actively engage learners to analyze, synthesize, organize, and evaluate content and result in learners constructing their own knowledge.

CR-5000 is Zuken's EDA design suite for electronics systems and printed circuit boards aimed at the enterprise market. It was developed to tackle complex design needs that involve managing the complete development and manufacturing preparation process on an enterprise-wide scale. CR-5000 offers relevant functionality for the design of complex and high-speed boards, addressing design challenges such as signal integrity and electromagnetic compatibility.

<span class="mw-page-title-main">Holtek</span>

Holtek Semiconductor is a Taiwan-based semiconductor design centre and provider with its headquarters and design operations based in the Hsinchu Science Park in Taiwan, and has sales offices located the United States and India. Holtek's design focus is in both 32-bit and 8-bit along with Touch microcontroller development, and as of 2022 the firm employed 631 employees. Holtek also designs and provides peripheral semiconductor products such as remote control, telecommunication, power management, computer peripheral, and memory devices. Holtek's device application area is concentrated in the consumer product field such as household appliances, computer peripheral products, remote controllers, leisure products, medical equipment as well as industrial controllers. Holtek microcontrollers are in home appliances including brands such as Philips, Siemens, Märklin and Japanese brands such as Futaba and Sony.

<span class="mw-page-title-main">Fritzing</span> Open source CAD system for electronic design, aimed at hobbyists

Fritzing is an open-source initiative to develop amateur or hobby CAD software for the design of electronics hardware, intended to allow designers and artists to build more permanent circuits from prototypes. It was developed at the University of Applied Sciences Potsdam. Fritzing is free software under the GPL 3.0 or later license, with the source code available on GitHub and the binaries at a monetary cost, which is allowed by the GPL.

<span class="mw-page-title-main">Altium Designer</span> Electronic Design Automation Software

Altium Designer (AD) is a PCB and electronic design automation software package for printed circuit boards. It is developed by Australian software company Altium Limited. Altium Designer was previously named under the "Protel" brand.

<span class="mw-page-title-main">DipTrace</span>

DipTrace is a proprietary software suite for electronic design automation (EDA) used for electronic schematic capture and printed circuit board layouts. DipTrace has four applications: schematic capture editor, PCB layout editor with built-in shape-based autorouter and 3D preview, component editor, and pattern editor.

<span class="mw-page-title-main">Pulsonix</span>

Pulsonix is an electronic design automation (EDA) software suite for schematic capture and PCB design. It is produced by WestDev, which is headquartered in Gloucestershire, England, with additional sales and distribution offices overseas. It was first released in 2001, and runs on Windows.

<span class="mw-page-title-main">Arduino Uno</span> Microcontroller board

The Arduino Uno is an open-source microcontroller board based on the Microchip ATmega328P microcontroller (MCU) and developed by Arduino.cc and initially released in 2010. The microcontroller board is equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards (shields) and other circuits. The board has 14 digital I/O pins, 6 analog I/O pins, and is programmable with the Arduino IDE, via a type B USB cable. It can be powered by a USB cable or a barrel connector that accepts voltages between 7 and 20 volts, such as a rectangular 9-volt battery. It has the same microcontroller as the Arduino Nano board, and the same headers as the Leonardo board. The hardware reference design is distributed under a Creative Commons Attribution Share-Alike 2.5 license and is available on the Arduino website. Layout and production files for some versions of the hardware are also available.

Toolkit for Interactive Network Analysis (TINA) is a SPICE-based electronics design and training software by DesignSoft of Budapest. Its features include analog, digital, and mixed circuit simulations, and printed circuit board (PCB) design.

CircuitMaker is electronic design automation software for printed circuit board designs targeted at the hobby, hacker, and maker community. CircuitMaker is available as freeware, and the hardware designed with it may be used for commercial and non-commercial purposes without limitations. It is currently available publicly as version 2.0 by Altium Limited, with the first non-beta release on January 17, 2016.

EasyEDA is a web-based EDA tool suite that enables hardware engineers to design, simulate, share - publicly and privately - and discuss schematics, simulations and printed circuit boards. Other features include the creation of a bill of materials, Gerber files and pick and place files and documentary outputs in PDF, PNG and SVG formats.

References

  1. "Length Matching". Labcenter Electronics. Retrieved 13 February 2018.
  2. Satar, Mohamad Nasrul Abdul; Ishak, Dahaman (2011). "Application of Proteus VSM in modelling brushless DC motor drives". 2011 4th International Conference on Mechatronics (ICOM). pp. 1–7. doi:10.1109/ICOM.2011.5937161. ISBN   978-1-61284-435-0. S2CID   43626052.
  3. Narasimham, P.V.R.L.; Sarma, A.V.R.S; Roshankumar, P.; Rajasekhar, K. (2006). "An efficient approach for implementing Space Vector Modulation for controlling induction motor". 2006 India International Conference on Power Electronics. pp. 411–415. doi:10.1109/IICPE.2006.4685408. ISBN   978-1-4244-3450-3. S2CID   33844636.
  4. Xiumei, Xu; Jinfeng, Pan (2011). "The simulation of temperature and humidity control system based on PROTEUS". 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC). pp. 1896–1898. doi:10.1109/MEC.2011.6025856. ISBN   978-1-61284-719-1. S2CID   15575589.
  5. Zhenwei, Han; Kefei, Song (2011). "Design of thermostat system based on Proteus simulation software". Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. pp. 1901–1904. doi:10.1109/EMEIT.2011.6023410. ISBN   978-1-61284-087-1. S2CID   1799205.
  6. Ding, Yanchuang; Guo, Jinying (2010). "LED Display Screen Design and Proteus Simulation Based on Single-Chip Microcomputer". 2010 2nd International Conference on Information Engineering and Computer Science. pp. 1–4. doi:10.1109/ICIECS.2010.5677762. ISBN   978-1-4244-7939-9. S2CID   16036167.
  7. Circuits Gallery (October 2014). "Arduino and Proteus VSM".
  8. Elecnote Hobby Projects."Electronic circuits based on PIC microcontrollers and Arduino boards".
  9. Online Training with Microchip and Proteus VSM "Get Started with MPLAB® X IDE and Microchip Tools".
  10. Future Engineers Proteus VSM projects."Online Training Projects".
  11. Yao Li; Lei Zhang (2011). "The application of Proteus in teaching of microcomputer principle". 2011 International Conference on Computer Science and Service System (CSSS). pp. 1770–1772. doi:10.1109/CSSS.2011.5974943. ISBN   978-1-4244-9762-1. S2CID   36883145.
  12. Bo Su; Li Wang (2010). "Application of Proteus virtual system modelling (VSM) in teaching of microcontroller". 2010 International Conference on E-Health Networking Digital Ecosystems and Technologies (EDT). pp. 375–378. doi:10.1109/EDT.2010.5496343. ISBN   978-1-4244-5514-0. S2CID   18770309.