Paracatenula

Last updated

Paracatenula
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Paracatenula

Sterrer and Rieger, 1974 [Ref 1]

Paracatenula is a genus of millimeter sized free-living marine gutless catenulid flatworms. [Ref 1]

Contents

Paracatenula spp. are found worldwide in warm temperate to tropical subtidal sediments. They are part of the interstitial meiofauna of sandy sediments. Adult Paracatenula lack a mouth and a gut and are associated with intracellular symbiotic alphaproteobacteria of the genus Candidatus Riegeria. [Ref 2] [Ref 3] The symbionts are housed in bacteriocytes in a specialized organ, the trophosome (Greek τροφοςtrophos ‘food’). Ca. Riegeria can make up half of the worms' biomass. [Ref 3] [Ref 4] The beneficial symbiosis with the carbon dioxide fixing and sulfur-oxidizing endosymbionts allows the marine flatworm to live in nutrient poor environments. The symbionts not only provide the nutrition but also maintain the primary energy reserves in the symbiosis. [Ref 5]

A flatworm, Paracatenula sp., elegantly moving in the sediment. The white trophosome contains endosymbionts while the anterior transparent part of the worm, called rostrum, is bacteria-free. Paracatenula sediment OJ 2015.tif
A flatworm, Paracatenula sp., elegantly moving in the sediment. The white trophosome contains endosymbionts while the anterior transparent part of the worm, called rostrum, is bacteria-free.

Diversity

Five species of Paracatenula have been described— P. erato , P. kalliope , P. polyhymnia , P. urania and P. galateia , named after muses and nymphs of the Greek mythology. [Ref 1] [Ref 6] Several more species have been morphologically and molecularly identified, but are not formally described. [Ref 3] The best studied species are P. galateia from the Belize barrier reef and a yet undescribed species P. sp. santandrea from the Italian Island of Elba. [Ref 5]

Distribution

Paracatenula are globally distributed in warm temperate to tropical regions and have been collected from Belize (Caribbean Sea), Egypt (Red Sea), Australia (Pacific Ocean) and Italy (Mediterranean Sea). They occur in the oxic-anoxic interface of subtidal sands and have been found in water depths up to 40 m. [Ref 3]

Anatomy

Paracatenula can reach a length of up to 15 mm and a width of 0.4 mm. Several larger species of Paracatenula, such as P. galateia are flattened like a leaf, while all smaller species are round. All Paracatenula species examined so far were found to harbor bacterial symbionts in specialized symbiont-housing cells that form the nutritive organ - the trophosome. [Ref 3] [Ref 7] The frontal part of the worms—the rostrum—is transparent and bacteria-free, and houses the brain, while the trophosome region appears white due to light refracting inclusions in the bacterial symbionts. [Ref 1] [Ref 3] Some species of Paracatenula such as P. galateia possess a statocyst with a single statolith. [Ref 6]

Life cycle and reproduction

Although Paracatenula produce sperm and eggs that can be very informative to differentiate between species, sexual reproduction has not been observed. [Ref 5] Instead, the worms reproduce by asexual fission or fragmentation, a process called paratomy. Paracatenula worms have high regenerative capabilities and can regenerate a lost head including the brain within 10–14 days [Ref 8] [Ref 9] The bacteriocytes of dividing worms are split during the fission process and the population of symbiotic bacteria is distributed to the two daughter individuals. [Ref 8]

Host–symbiont relationship

Paracatenula host their symbionts within bacteriocytes in the trophosome. These bacteria, named Ca. Riegeria, belong to the lineage of Alphaproteobacteria forming a monophyletic group within the order Rhodospirillales [Ref 3] and the family Rhodospirillaceae . [Ref 5] The co-speciation between host and bacteria suggests a strict vertical transmission of the bacteria in which the endosymbionts are directly transferred from parents to their offspring. [Ref 3] [Ref 8] [Ref 10] The symbiosis is shown to be beneficial for both partners. [Ref 3] [Ref 4] [Ref 5] The lack of both a gut lumen and a mouth indicate that the host derives most of its nutrition from its symbionts, which have the potential for carbon dioxide fixation and sulfur oxidation. [Ref 2] [Ref 3] [Ref 5] In return, the host provides its symbionts with a stable supply of electron donors such as sulfide and oxygen in a dynamic and heterogeneous environment. [Ref 2] [Ref 3] [Ref 5] Furthermore, symbionts living intracellularly in the worms are protected from predation as well as competition for nutrients by other bacteria. [Ref 3]

Symbiont physiology

Despite having a reduced genome with roughly 1400 genes, Ca. Riegeria symbionts have maintained a broad physiological repertoire, which stands in contrast to all other reduced symbionts vertically transmitted for hundreds of millions of years. Ca. R. santandreae symbionts fix carbon dioxide, store carbon in multiple storage compounds and produce all necessary building blocks for cellular life, including sugars, nucleotides, amino acids, vitamins and co-factors. [Ref 5]

Host provisioning

Paracatenula lack mouth and gut, and are nutritionally dependent on their symbionts. In all other chemosynthetic symbioses the host acquires their nutrition by digestion of symbionts. In contrast to this, in Paracatenula, the symbionts cater their host by secreting outer-membrane vesicles (OMVs) and symbiont digestion is rare. [Ref 5] With their massive storage capabilities and the elegant way of providing the nutrition via OMVs, the symbionts have been suggested to form a ‘bacterial liver’ and peculiar ‘battery’ in the integrated Paracatenula symbiosis [Ref 5] [Ref 11] [Ref 12]

Related Research Articles

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualistic relationship. Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Symbiosis</span> Close, long-term biological interaction between distinct organisms (usually species)

Symbiosis is any type of a close and long-term biological interaction between two biological organisms of different species, termed symbionts, be it mutualistic, commensalistic, or parasitic. In 1879, Heinrich Anton de Bary defined it as "the living together of unlike organisms". The term is sometimes used in the more restricted sense of a mutually beneficial interaction in which both symbionts contribute to each other's support.

<span class="mw-page-title-main">Marine worm</span>

Any worm that lives in a marine environment is considered a water worm. Marine worms are found in several different phyla, including the Platyhelminthes, Nematoda, Annelida, Chaetognatha, Hemichordata, and Phoronida. For a list of marine animals that have been called "sea worms", see sea worm.

<i>Riftia</i> Giant tube worm (species of annelid)

Riftia pachyptila, commonly known as the giant tube worm and less commonly known as the giant beardworm, is a marine invertebrate in the phylum Annelida related to tube worms commonly found in the intertidal and pelagic zones. R. pachyptila lives on the floor of the Pacific Ocean near hydrothermal vents. The vents provide a natural ambient temperature in their environment ranging from 2 to 30 °C, and this organism can tolerate extremely high hydrogen sulfide levels. These worms can reach a length of 3 m, and their tubular bodies have a diameter of 4 cm (1.6 in).

<i>Osedax</i> Genus of annelid worms

Osedax is a genus of deep-sea siboglinid polychaetes, commonly called boneworms, zombie worms, or bone-eating worms. Osedax is Latin for "bone-eater". The name alludes to how the worms bore into the bones of whale carcasses to reach enclosed lipids, on which they rely for sustenance. They utilize specialized root tissues for bone-boring. It is possible that multiple species of Osedax reside in the same bone. Osedax worms are also known to feed on the collagen itself by making holes in the whale's skeletal structure. These holes can also serve as a form of protection from nearby predators.

A bacteriome is a specialized organ, found mainly in some insects, that hosts endosymbiotic bacteria. Bacteriomes contain specialized cells, called bacteriocytes, that provide nutrients and shelter to the bacteria while protecting the host animal. In exchange, the bacteria provide essentials like vitamins and amino acids to the host insect. Bacteriomes also protect the bacteria from the host's immune system, with insects secreting antimicrobial peptides such as the coleoptericin secreted by weevils to keep bacteria within the bacteriome.

<i>Buchnera aphidicola</i> Species of bacterium

Buchnera aphidicola, a member of the Pseudomonadota and the only species in the genus Buchnera, is the primary endosymbiont of aphids, and has been studied in the pea aphid, Acyrthosiphon pisum. Buchnera is believed to have had a free-living, Gram-negative ancestor similar to a modern Enterobacterales, such as Escherichia coli. Buchnera is 3 μm in diameter and has some of the key characteristics of its Enterobacterales relatives, such as a Gram-negative cell wall. However, unlike most other Gram-negative bacteria, Buchnera lacks the genes to produce lipopolysaccharides for its outer membrane. The long association with aphids and the limitation of crossover events due to strictly vertical transmission has seen the deletion of genes required for anaerobic respiration, the synthesis of amino sugars, fatty acids, phospholipids, and complex carbohydrates. This has resulted not only in one of the smallest known genomes of any living organism, but also one of the most genetically stable.

Symbiotic bacteria are bacteria living in symbiosis with another organism or each other. For example, rhizobia living in root nodules of legumes provide nitrogen fixing activity for these plants.

<span class="mw-page-title-main">Lucinidae</span> Family of bivalves

Lucinidae, common name hatchet shells, is a family of saltwater clams, marine bivalve molluscs.

<span class="mw-page-title-main">Catenulida</span> Order of free-living flatworms

Catenulida is an order of flatworms in the classical classification, or a class of flatworms in a phylogenetic approach. They are relatively small free-living flatworms, inhabiting freshwater and marine environments. There are about 100 species described worldwide, but the simple anatomy makes species distinction problematic.

<span class="mw-page-title-main">Trophosome</span> Organ containing endosymbionts

A trophosome is a highly vascularised organ found in some animals that houses symbiotic bacteria that provide food for their host. Trophosomes are contained by the coelom of tube worms and in the body of symbiotic flatworms of the genus Paracatenula.

<i>Olavius algarvensis</i> Species of annelid worm

Olavius algarvensis is a species of gutless oligochaete worm in the family Tubificidae which depends on symbiotic bacteria for its nutrition.

"Candidatus Karelsulcia muelleri" is an aerobic, gram-negative, bacillus bacterium that is a part of the phylum Bacteroidota. "Ca. K. muelleri" is an obligate and mutualistic symbiotic microbe commonly found occupying specialized cell compartments of sap-feeding insects called bacteriocytes. A majority of the research done on "Ca. K. muelleri" has detailed its relationship with the host Homalodisca vitripennis. Other studies have documented the nature of its residency in other insects like the maize leafhopper (Cicadulina) or the spittlebug (Cercopoidea). "Ca. K. muelleri" is noted for its exceptionally minimal genome and it is currently identified as having the smallest known sequenced Bacteroidota genome at only 245 kilobases.

<span class="mw-page-title-main">Marine microbial symbiosis</span>

Microbial symbiosis in marine animals was not discovered until 1981. In the time following, symbiotic relationships between marine invertebrates and chemoautotrophic bacteria have been found in a variety of ecosystems, ranging from shallow coastal waters to deep-sea hydrothermal vents. Symbiosis is a way for marine organisms to find creative ways to survive in a very dynamic environment. They are different in relation to how dependent the organisms are on each other or how they are associated. It is also considered a selective force behind evolution in some scientific aspects. The symbiotic relationships of organisms has the ability to change behavior, morphology and metabolic pathways. With increased recognition and research, new terminology also arises, such as holobiont, which the relationship between a host and its symbionts as one grouping. Many scientists will look at the hologenome, which is the combined genetic information of the host and its symbionts. These terms are more commonly used to describe microbial symbionts.

<i>Zoothamnium niveum</i> Species of single-celled organism

Zoothamnium niveum is a species of ciliate protozoan which forms feather-shaped colonies in marine coastal environments. The ciliates form a symbiosis with sulfur-oxidizing chemosynthetic bacteria of the species "Candidatus Thiobios zoothamnicoli", which live on the surface of the colonies and give them their unusual white color.

<i>Kentrophoros</i> Genus of single-celled organisms

Kentrophoros is a genus of ciliates in the class Karyorelictea. Ciliates in this genus lack a distinct oral apparatus and depend primarily on symbiotic bacteria for their nutrition.

Stilbonematinae is a subfamily of the nematode worm family Desmodoridae that is notable for its symbiosis with sulfur-oxidizing bacteria.

Astomonema is a genus of nematode worms in the family Siphonolaimidae. They lack a mouth or conventional digestive tract, but contain symbiotic sulfur-oxidizing bacteria that serve as their primary food source. They live in the marine interstitial habitat.

Vertical transmission of symbionts is the transfer of a microbial symbiont from the parent directly to the offspring. Many metazoan species carry symbiotic bacteria which play a mutualistic, commensal, or parasitic role. A symbiont is acquired by a host via horizontal, vertical, or mixed transmission.

<span class="mw-page-title-main">Marine microbiome</span>

All animals on Earth form associations with microorganisms, including protists, bacteria, archaea, fungi, and viruses. In the ocean, animal–microbial relationships were historically explored in single host–symbiont systems. However, new explorations into the diversity of marine microorganisms associating with diverse marine animal hosts is moving the field into studies that address interactions between the animal host and a more multi-member microbiome. The potential for microbiomes to influence the health, physiology, behavior, and ecology of marine animals could alter current understandings of how marine animals adapt to change, and especially the growing climate-related and anthropogenic-induced changes already impacting the ocean environment.

References

    1. 1 2 3 4 Sterrer, W.; Rieger, R.M. (1974). "Retronectidae – A new cosmopolitan marine family of Catenulida (Turbellaria)". In Riser, N.; Morse, M. (eds.). Biology of the Turbellaria. New York, NY: McGraw-Hill. pp. 63–92.
    2. 1 2 3 Ott, J.; Rieger, G.; Rieger, R.; Enderes, F. (1982). "New Mouth less Interstitial Worms from the Sulfide System: Symbiosis with Prokaryotes". Marine Ecology. 3 (4): 313–333. Bibcode:1982MarEc...3..313O. doi:10.1111/j.1439-0485.1982.tb00282.x.
    3. 1 2 3 4 5 6 7 8 9 10 11 12 Gruber-Vodicka, H.R.; Dirks, U.; Leisch, N.; Baranyi, C.; Stoecker, K.; Bulgheresi, S.; Heindl, N.R.; Horn, M.; Lott, C.; Loy, A.; Wagner, M.; Ott, J. (27 June 2011). "Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms". Proceedings of the National Academy of Sciences. 108 (29): 12078–12083. Bibcode:2011PNAS..10812078G. doi: 10.1073/pnas.1105347108 . PMC   3141929 . PMID   21709249.
    4. 1 2 Leisch, N; Dirks, U.; Gruber-Vodicka, H.R.; Schmid, M.; Sterrer, W.; Ott, J.A. (2011). "Microanatomy of the trophosome region of Paracatenula cf. polyhymnia (Catenulida, Platyhelminthes) and its intracellular symbionts". Zoomorphology. 130 (4): 261–271. doi:10.1007/s00435-011-0135-y. PMC   3213344 . PMID   22131640.
    5. 1 2 3 4 5 6 7 8 9 10 Jäckle, O.; Seah, B.K.B.; Tietjen, M.; Leisch, N.; Liebeke, M.; Kleiner, M.; Berg, J.S.; Gruber-Vodicka, H.R. (8 April 2019). "Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula". Proceedings of the National Academy of Sciences. 116 (17): 8505–8514. Bibcode:2019PNAS..116.8505J. doi: 10.1073/pnas.1818995116 . PMC   6486704 . PMID   30962361.
    6. 1 2 Dirks, U.; Gruber-Vodicka, H.R.; Leisch, N.; Sterrer, W.; Ott, J.A. (2011). "A new species of symbiotic flatworms, Paracatenula galateia sp. nov. (Platyhelminthes: Catenulida: Retronectidae) from Belize (Central America)". Marine Biology Research. 7 (8): 769–777. doi:10.1080/17451000.2011.574880. S2CID   85133741.
    7. Schaechter, E. (11 July 2019). "Of Terms in Biology: Trophosome".
    8. 1 2 3 Dirks, U.; Gruber-Vodicka, H.R.; Leisch, N.; Bulgheresi, S.; Egger, B.; Ladurner, P. & Ott, J.A. (2012). "Bacterial symbiosis maintenance in the asexually reproducing and regenerating flatworm Paracatenula galateia". PLOS ONE. 7 (4): e34709. Bibcode:2012PLoSO...734709D. doi: 10.1371/journal.pone.0034709 . PMC   3317999 . PMID   22509347.
    9. Jäckle, Oliver (November 2018). "Chapter IV". Evolution and physiology of the Paracatenula symbiosis (Doctoral thesis).
    10. Bright, M.; Bulgheresi, S. (2010). "A complex journey: transmission of microbial symbionts". Nature Reviews Microbiology. 8 (3): 218–230. doi:10.1038/nrmicro2262. PMC   2967712 . PMID   20157340.
    11. Racaniello, V., Schaechter, E.; Swanson, M.; Schmidt, M. (26 April 2019). "Intercellular microbial trade". This week in microbiology (Podcast).{{cite podcast}}: CS1 maint: multiple names: authors list (link)
    12. "Gutless worms rely on handouts from internal microbes". Nature. 568 (7752): 278. 10 April 2019. Bibcode:2019Natur.568R.278.. doi:10.1038/d41586-019-01147-0. S2CID   115153189.