Perisylvian syndrome

Last updated
Perisylvian syndrome
Other namesBilateral perisylvian polymicrogyria
Lateral sulcus2.png
Lateral sulcus (Sylvian fissure)
Specialty Neurology

Perisylvian syndrome is a rare neurological disease characterized by damage to the sylvian fissure (lateral sulcus), an area in the brain involved in language and speech. The main symptoms are difficulty chewing and swallowing, low muscle tone in the face and tongue, speech and language development disorders, and epilepsy. These symptoms are also often accompanied by difficulties with mobility and intellectual disabilities. [1]

Contents

The history evidence and exact underlying cause of this condition has not been sourced by researchers and other experts. Due to its low prevalence and possible misdiagnosis, there is a lack of definitive information; Many articles postulate several sources for causes, such as stroke and external trauma to the head, causing damage to the fissure and resulting in malfunctioning structures that interact with it. Other articles have included explorations in diagnosis and treatment of symptoms, with some exploratory treatment of the fissure damage. Interestingly, it has become and increasing focus due to the significant anatomical structures that cross it [2]

It is not to be confused with Congenital Bilateral Perisylvian Syndrome (CBPS), which is a form of PS that occurs in embryo and appears in birth and childhood [3]

Signs and Symptoms

Due to the relationships the fissure has with multiple vital parts of the brain, damage to any one of them can alter the function of the adjacent cortical regions, disrupting the connection between the cognitive, neural, and muscular network [4]

It is unclear if these are specific to long term or short term in duration, but symptoms are implied to be permanent without medical intervention. [4]

Site of speech processes that sit on the Perisylvian Fissure The classical Wernicke-Lichtheim-Geschwind model of the neurobiology of language fpsyg-04-00416-g001.jpg
Site of speech processes that sit on the Perisylvian Fissure

Speech

Trauma to the fissure near the temporal lobe can cause speech issues. Wernickes area is located on the superior temporal gyrus next to the end of the Sylvian fissure that sits towards the back of the head. This area is part of the language system, and majorly functions in the ability to recall speech sounds associated with written letters. Damage to this area can cause Anomia, a language disorder that makes it difficult to locate words, and Phonemic Paraphasia. [4]

The sylvian surface on the frontal lobe (located deep in the sylvian fissure) contains a bundle of fibers called the arcuate fasciculus (AF) that curve around the fissure, and comes from Brocas area, which is involved in language production and comprehension. Damage to this nerve bundle can cause conditions such as Brocas Aphasia and Expressive Aphasia. [4]

Auditory Processing Disorders

Damage to the fissure near the temporal lobe may also cause auditory processing disorders due to the disruption in the neural pathway in the area of the temporal lobe the fissure sits in. [4]

Epilepsy

Epilepsy is common in studies related to congenital (pre-birth), bilateral (both sides), and unilateral(one side) Perisylvian syndrome. Kuzniecky et all. Reported 90% of Perisylvian Syndrome cases with epilepsy. [5]

Man with facial paralysis on his right side Face of a man with right facial paralysis Wellcome L0061825.jpg
Man with facial paralysis on his right side

Facial paralysis

While the Sylvian fissure does not directly connect to the cranial nerves, previous exploratory dissection reveals that the middle cerebral artery (specifically the M2 segment) runs through the deep insular tissue. Damage to the Sylvian tissue may cause damage or malfunction to the arterial supply of the M2 branch and create an infarction resulting in hemiparesis (unilateral paralysis). [4] Mavili E et all. Study found that 89% of patients were present with psychomotor retardation, 84% with speech disorders, and 57% with cerebral palsy. [5]

Cause and Prevention

There are not many definitive pre-occuring conditions and risk factors that lead to the following causes of Perisylvian syndrome. Though the definitive cause is still being explored, it has been well defined that the condition cannot be spread from person to person. One study proposes several of the following causes that may create trauma to the fissure: [5]

Other studies have also explored its link to genetics. [5]

In the majority of cases however, the condition appears sporadically. [4]

Image of arachnoid cyst Arachnoid cyst.png
Image of arachnoid cyst

Cysts

Arachnoid cysts represent <1% of intracranial lesions, with the Sylvian fissure being the most common location, most predominant in males on the left side. [4]

Cysts are often discovered incidentally during imaging, and most common associated symptoms are headaches, seizures, and motor deficit due to the pressure the cyst applies to the temporal lobe. [4]

Pathophysiology and Mechanism

The Sylvian fissure is the most prominent crease on the brain. It sits on the lateral hemisphere of the brain, separating the temporal and frontal lobe. It extends into the parietal lobe, and sits perpendicular to the central sulcus, a prominent groove on top of the brain. It also sits in the insula, a part of the brain involved in various functions such as decision making, social emotions, empathy, pain processing, interception, auditory processing. The site is also closely associated with a major cranial artery known as the middle cerebral artery, a vital and the largest branch of the internal carotid artery that is responsible for blood supply to the brains frontal, temporal, and parietal lobes. It is made up of 4 branches that extend throughout the brain tissue, labeled as M1, M2, M3, and M4. [4]

In most cases of Perisylvian syndrome, the condition exists congenitally and is not typically developed throughout one’s lifetime without some sort of significant trauma to the head, causing lesions, pressure, or tissue death, and trickles down to the rest of neural processing in other vital functions of the brain. Once neural processes weaken in these areas, the brain is not able to send signals to its respective parts of the body. [5]

CT scan with MCA infarction MCA Territory Infarct.svg
CT scan with MCA infarction

Diagnosis

A neurologist would be seen if a diagnosis is desired. Considering the symptoms, a diagnosis may be suggested with visual evidence of the following:

CT scan

Early signs of the middle cerebral artery occlusion (MCA) can be found upon discovery of a hyperdense MCA on a brain CT scan. It appears with increased amplitude of the M1 segment, or with increased density in the MCA & branches inside the Sylvian fissure. [4]

Brain MRI

an MRI may show the appearance of ‘bat wings’ – an open fissure on both sides of the brain that is typically seen in type 1 Glutaric aciduria, a rare metabolic disorder that inhibits the breakdown of animo acids. [4]

Angiography

image of cerebral angiography Cerebral angiography, arteria vertebralis sinister injection.JPG
image of cerebral angiography

The Sylvian triangle is an important landmark on lateral cerebral angiograms. It is made up of 3 lines; A straight line that follows the loops of the M2 segment, paired with a large trunk of the MCA anterior, and the first ascending insular branch of the M2 segment posterior. [4]

History of Aneurysms

Bifurcation (division into two parts) or trifurcation (division in to three parts) of the M1 segment, located in the Sylvian fissure sphenoidal compartment, may create intracranial saccular aneurysms from the MCA. (Occurs in 22% of people). [4]

It is important to note that these methods are not definitive when investigating this condition. It is more likely for neurologists to diagnose a separate neurological condition based on the symptoms and patient history, and conclude the possible diagnosis as PS using the above visual evidence. [4] [5]

Treatment and Prognosis

Data in prognosis is very limited for this syndrome. However, neurological conditions affecting multiple parts of the brain generally have had a wide range of recovery timelines. In the case of Perisylvian Syndrome, there have been some invasive exploratory surgical interventions to improve symptoms:

Aneurysms

Possible exploratory treatments include embolization techniques, microsurgical techniques, and hybrid techniques involving multiple procedures. [4]

Inside-out dissection

General principle for surgery: the patient lays in supine position with the head rotated away at 30%. There are 3 spaces to consider with different challenges for each. [4]

In the superficial ocular compartment, the best point to begin is at the anterior sylvian point, below the pars traignularis, a triangular shape in the frontal lobe responsible for speech production and language processing. Then, a sharp incision of the outer arachnoid membrane is created on front side of superficial Sylvian veins. Then, the most visible veins are moved away from the temporal lobe. Finally, dissection of arachnoid bands (thick tissue in the arachnoid membrane) that connects brain tissue to brain tissue, and veins to veins, exposes the Sylvian membrane. [4]

Middle cranial fossa Middle cranial fossa - animation.gif
Middle cranial fossa

Following this, another dissection of the outside sylvian membrane occurs to expose the compartment, then dissection of deep arachnoid bands, mainly brain tissue to brain and artery connection to brain tissue. [4]

Lastly, in the deepest compartment, the M2 artery segment must be identified, located deeply on lateral insular surface. [4]

Cysts

Options for treatment and management may include conservative and surgical alternatives such as endoscopies, microsurgical craniotomy, and shunting. Neuroendoscopic fenestration is best initial procedure for middle cranial fossa arachnoid cysts. [4]

Medication

While medication cannot treat the condition, it may treat some associated symptoms:

One woman with bilateral Perisylvian Syndrome was treated for her epilepsy with lamotrigine and oxcarbazepine and was in remission for 8 years. When reappeared, treatment included LTG and levetiracetam, and resulted in significant clinical improvement. [5]

Epidemiology

With the condition occurring sporadically, there is minimal linkage to explore populations at risk. However, some studies report that Perisylvian syndrome may be genetically linked, as it may be passed from parent to child as some families may have many affected members. It is unknown whether this is autosomal recessive, dominant, or X-linked. [8] Some studies also suggest that those who have had previous significant head trauma may be at risk. [5]

Recent Research

In 2017, a study conducted by Freri et all. explored a new surgical treatment to improve symptoms of epilepsy in the perisylvian region for 16 pediatric patients who were resistant to medication, the median age during time of surgery was 12 years old. Prior to the procedure, patients completed a preoperative assessment including analysis of clinical history, EEG monitoring, High-resolution MRI, and a cognitive/neuropsychological evaluation. The procedure was performed with the goal of removing the epileptogenic zone, a part of the brain where seizure activity occurs. It was found post-operatively (39 months) that seizure outcome improved satisfactory in 69% of patients, with 7 being seizure-free, and two were free from disabling seizures. Cognition improved in 38% of patients as well. [9]

In 2020, a study conducted by Steriade et all. explored the relationship between encephalitis and seizure patterns in patients with drug-resistant epilepsy. Using 17 patients with encephalitis, and 17 control patients with drug-resistant epilepsy and no history of encephalitis, a stereotactic EEG was used to locate the onset and spread of seizures. The findings concluded that there were 4 distinct patterns of onset seizures, with 59% of the cohort having a Perisylvian onset. This was unique to the group with a history of encephalitis, and may indicate that encephalitic-related damage may cause an increase in vulnerability to damage at the Perisylvian Fissure. [10]

Related Research Articles

<span class="mw-page-title-main">Head injury</span> Serious trauma to the cranium

A head injury is any injury that results in trauma to the skull or brain. The terms traumatic brain injury and head injury are often used interchangeably in the medical literature. Because head injuries cover such a broad scope of injuries, there are many causes—including accidents, falls, physical assault, or traffic accidents—that can cause head injuries.

Porencephaly is an extremely rare cephalic disorder involving encephalomalacia. It is a neurological disorder of the central nervous system characterized by cysts or cavities within the cerebral hemisphere. Porencephaly was termed by Heschl in 1859 to describe a cavity in the human brain. Derived from Greek roots, the word porencephaly means 'holes in the brain'. The cysts and cavities are more likely to be the result of destructive (encephaloclastic) cause, but can also be from abnormal development (malformative), direct damage, inflammation, or hemorrhage. The cysts and cavities cause a wide range of physiological, physical, and neurological symptoms. Depending on the patient, this disorder may cause only minor neurological problems, without any disruption of intelligence, while others may be severely disabled or die before the second decade of their lives. However, this disorder is far more common within infants, and porencephaly can occur both before or after birth.

<span class="mw-page-title-main">Temporal lobe</span> One of the four lobes of the mammalian brain

The temporal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The temporal lobe is located beneath the lateral fissure on both cerebral hemispheres of the mammalian brain.

<span class="mw-page-title-main">Occipital lobe</span> Part of the brain at the back of the head

The occipital lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The name derives from its position at the back of the head, from the Latin ob, 'behind', and caput, 'head'.

<span class="mw-page-title-main">Hypergraphia</span> Psychological condition wherein a person is compelled to write or draw

Hypergraphia is a behavioral condition characterized by the intense desire to write or draw. Forms of hypergraphia can vary in writing style and content. It is a symptom associated with temporal lobe changes in epilepsy and in Geschwind syndrome. Structures that may have an effect on hypergraphia when damaged due to temporal lobe epilepsy are the hippocampus and Wernicke's area. Aside from temporal lobe epilepsy, chemical causes may be responsible for inducing hypergraphia.

<span class="mw-page-title-main">Polymicrogyria</span> Medical condition

Polymicrogyria (PMG) is a condition that affects the development of the human brain by multiple small gyri (microgyri) creating excessive folding of the brain leading to an abnormally thick cortex. This abnormality can affect either one region of the brain or multiple regions.

<span class="mw-page-title-main">Moyamoya disease</span> Disease characterized by constriction of brain arteries

Moyamoya disease is a disease in which certain arteries in the brain are constricted. Blood flow is blocked by constriction and blood clots (thrombosis). A collateral circulation develops around the blocked vessels to compensate for the blockage, but the collateral vessels are small, weak, and prone to bleeding, aneurysm and thrombosis. On conventional angiography, these collateral vessels have the appearance of a "puff of smoke", described as moyamoya (もやもや) in Japanese.

<span class="mw-page-title-main">Middle cerebral artery</span> Paired artery that supplies blood to the cerebrum

The middle cerebral artery (MCA) is one of the three major paired cerebral arteries that supply blood to the cerebrum. The MCA arises from the internal carotid artery and continues into the lateral sulcus where it then branches and projects to many parts of the lateral cerebral cortex. It also supplies blood to the anterior temporal lobes and the insular cortices.

Cortical blindness is the total or partial loss of vision in a normal-appearing eye caused by damage to the brain's occipital cortex. Cortical blindness can be acquired or congenital, and may also be transient in certain instances. Acquired cortical blindness is most often caused by loss of blood flow to the occipital cortex from either unilateral or bilateral posterior cerebral artery blockage and by cardiac surgery. In most cases, the complete loss of vision is not permanent and the patient may recover some of their vision. Congenital cortical blindness is most often caused by perinatal ischemic stroke, encephalitis, and meningitis. Rarely, a patient with acquired cortical blindness may have little or no insight that they have lost vision, a phenomenon known as Anton–Babinski syndrome.

<span class="mw-page-title-main">Arachnoid cyst</span> Medical condition

Arachnoid cysts are cerebrospinal fluid covered by arachnoidal cells and collagen that may develop between the surface of the brain and the cranial base or on the arachnoid membrane, one of the three meningeal layers that cover the brain and the spinal cord. Primary arachnoid cysts are a congenital disorder whereas secondary arachnoid cysts are the result of head injury or trauma. Most cases of primary cysts begin during infancy; however, onset may be delayed until adolescence.

<span class="mw-page-title-main">Temporal lobe epilepsy</span> Chronic focal seizure disorder

In the field of neurology, temporal lobe epilepsy is an enduring brain disorder that causes unprovoked seizures from the temporal lobe. Temporal lobe epilepsy is the most common type of focal onset epilepsy among adults. Seizure symptoms and behavior distinguish seizures arising from the medial temporal lobe from seizures arising from the lateral (neocortical) temporal lobe. Memory and psychiatric comorbidities may occur. Diagnosis relies on electroencephalographic (EEG) and neuroimaging studies. Anticonvulsant medications, epilepsy surgery and dietary treatments may improve seizure control.

Frontal lobe epilepsy (FLE) is a neurological disorder that is characterized by brief, recurring seizures arising in the frontal lobes of the brain, that often occur during sleep. It is the second most common type of epilepsy after temporal lobe epilepsy (TLE), and is related to the temporal form in that both forms are characterized by partial (focal) seizures.

<span class="mw-page-title-main">Foix–Chavany–Marie syndrome</span> Medical condition

Foix–Chavany–Marie syndrome (FCMS), also known as bilateral opercular syndrome, is a neuropathological disorder characterized by paralysis of the facial, tongue, pharynx, and masticatory muscles of the mouth that aid in chewing. The disorder is primarily caused by thrombotic and embolic strokes, which cause a deficiency of oxygen in the brain. As a result, bilateral lesions may form in the junctions between the frontal lobe and temporal lobe, the parietal lobe and cortical lobe, or the subcortical region of the brain. FCMS may also arise from defects existing at birth that may be inherited or nonhereditary. Symptoms of FCMS can be present in a person of any age and it is diagnosed using automatic-voluntary dissociation assessment, psycholinguistic testing, neuropsychological testing, and brain scanning. Treatment for FCMS depends on the onset, as well as on the severity of symptoms, and it involves a multidisciplinary approach.

Abdominal epilepsy is a rare condition consisting of gastrointestinal disturbances caused by epileptiform seizure activity. It is most frequently found in children, though a few cases of it have been reported in adults. It has been described as a type of temporal lobe epilepsy. Responsiveness to anticonvulsants can aid in the diagnosis. Distinguishing features of abdominal epilepsy include (1) Abnormal laboratory, radiographic, and endoscopic findings revealing paroxysmal GI manifestations of unknown origin (2) CNS symptoms (3) Abnormal EEG. Most published medical literature dealing with abdominal epilepsy is in the form of individual case reports. A 2005 review article found a total of 36 cases described in the medical literature.

Epilepsy surgery involves a neurosurgical procedure where an area of the brain involved in seizures is either resected, ablated, disconnected or stimulated. The goal is to eliminate seizures or significantly reduce seizure burden. Approximately 60% of all people with epilepsy have focal epilepsy syndromes. In 20% to 30% of these patients, the condition is not adequately controlled with adequate trials of two anticonvulsive drugs, termed drug resistant epilepsy, or refractory epilepsy. Such patients are potential candidates for surgical epilepsy treatment.

<span class="mw-page-title-main">Central nervous system disease</span> Disease of the brain or spinal cord

Central nervous system diseases or central nervous system disorders are a group of neurological disorders that affect the structure or function of the brain or spinal cord, which collectively form the central nervous system (CNS). These disorders may be caused by such things as infection, injury, blood clots, age related degeneration, cancer, autoimmune disfunction, and birth defects. The symptoms vary widely, as do the treatments.

Traumatic brain injury can cause a variety of complications, health effects that are not TBI themselves but that result from it. The risk of complications increases with the severity of the trauma; however even mild traumatic brain injury can result in disabilities that interfere with social interactions, employment, and everyday living. TBI can cause a variety of problems including physical, cognitive, emotional, and behavioral complications.

<span class="mw-page-title-main">Ulegyria</span> Type of cortical scarring deep in the sulci

Ulegyria is a diagnosis used to describe a specific type of cortical scarring in the deep regions of the sulcus that leads to distortion of the gyri. Ulegyria is identified by its characteristic "mushroom-shaped" gyri, in which scarring causes shrinkage and atrophy in the deep sulcal regions while the surface gyri are spared. This condition is most often caused by hypoxic-ischemic brain injury in the perinatal period. The effects of ulegyria can range in severity, although it is most commonly associated with cerebral palsy, mental retardation and epilepsy. N.C. Bresler was the first to view ulegyria in 1899 and described this abnormal morphology in the brain as “mushroom-gyri." Although ulegyria was first identified in 1899, there is still limited information known or reported about the condition.

<span class="mw-page-title-main">Congenital bilateral perisylvian syndrome</span> Medical condition

Congenital bilateral perisylvian syndrome (CBPS) is a rare neurological disease characterized by paralysis of certain facial muscles and epileptic seizures.

<span class="mw-page-title-main">Occipital epilepsy</span> Medical condition

Occipital epilepsy is a neurological disorder that arises from excessive neural activity in the occipital lobe of the brain that may or may not be symptomatic. Occipital lobe epilepsy is fairly rare, and may sometimes be misdiagnosed as migraine when symptomatic. Epileptic seizures are the result of synchronized neural activity that is excessive, and may stem from a failure of inhibitory neurons to regulate properly.

References

  1. "Perisylvian syndrome". www.socialstyrelsen.se. Retrieved 2015-08-13.
  2. 1 2 Singh, A.; Kate, M. P.; Nair, M. D.; Kesavadas, C.; Kapilamoorthy, T. R. (April 2011). "Bilateral perisylvian infarct: a rare cause and a rare occurrence" (PDF). Singapore Medical Journal. 52 (4): e62–65. PMID   21552775.
  3. 1 2 Mane, RanojiShivaji; Gowda, AnandK; Kumar, Ashok (2013). "Congenital bilateral perislyvian syndrome: Case report and review of literature". Journal of Clinical Neonatology. 2 (4): 196–198. doi: 10.4103/2249-4847.123106 . PMC   3883218 . PMID   24404535.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Alvarez Toledo, Nilo; Munakomi, Sunil; Prestigiacomo, Charles J. (2024). "Neuroanatomy, Sylvian Fissure". StatPearls. StatPearls Publishing. PMID   34662066.
  5. 1 2 3 4 5 6 7 8 Mameniškienė, R; Sakalauskaitė-Juodeikienė, E; Kizlaitienė, R; Budrys, V; Valevičienė, N R; Kasiulevičius, V; Petrulionis, M (2014). "Bilateral Perisylvian Syndrome With Autonomic Seizures and Autonomic Status Epilepticus: A Case Report With Long-Term Follow-up" (PDF). Neurologijos Seminarai. 18 (3): 213–217. Archived from the original (PDF) on 19 June 2024.
  6. Ciacciarelli, Antonio; Sette, Giuliano; Giubilei, Franco; Orzi, Francesco (March 2020). "Chronic cerebral hypoperfusion: An undefined, relevant entity". Journal of Clinical Neuroscience. 73: 8–12. doi:10.1016/j.jocn.2020.01.026. PMID   31948882.
  7. Murphy, Stephen JX.; Werring, David J. (September 2020). "Stroke: causes and clinical features". Medicine. 48 (9): 561–566. doi:10.1016/j.mpmed.2020.06.002. PMC   7409792 . PMID   32837228.
  8. Oliveira, Ecila Paula dos Mesquita de; Guerreiro, Marilisa Mantovani; Guimarães, Catarina Abraão; Brandão-Almeida, Iara Lêda; Montenegro, Maria Augusta; Cendes, Fernando; Hage, Simone Rocha de Vasconcellos (December 2005). "Caracterização das manifestações lingüísticas de uma família com Síndrome Perisylviana". Pró-Fono Revista de Atualização Científica. 17 (3): 393–402. doi: 10.1590/S0104-56872005000300013 . PMID   16389796.
  9. Freri, Elena; Matricardi, Sara; Gozzo, Francesca; Cossu, Massimo; Granata, Tiziana; Tassi, Laura (August 2017). "Perisylvian, including insular, childhood epilepsy: Presurgical workup and surgical outcome". Epilepsia. 58 (8): 1360–1369. doi:10.1111/epi.13816. PMID   28643843.
  10. Steriade, Claude; Jehi, Lara; Krishnan, Balu; Morita-Sherman, Marcia; Moosa, Ahsan N.V.; Hantus, Stephen; Chauvel, Patrick (August 2020). "Perisylvian vulnerability to postencephalitic epilepsy". Clinical Neurophysiology. 131 (8): 1702–1710. doi:10.1016/j.clinph.2020.04.019. PMC   7879563 . PMID   32504929.