Phenylglyoxylate dehydrogenase (acylating)

Last updated
phenylglyoxylate dehydrogenase (acylating)
Identifiers
EC no. 1.2.1.58
CAS no. 205510-78-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a phenylglyoxylate dehydrogenase (acylating; EC 1.2.1.58) is an enzyme that catalyzes the chemical reaction

phenylglyoxylate + NAD+ + CoA-SH benzoyl-S-CoA + CO2 + NADH

The three substrates of this enzyme are phenylglyoxylate, NAD+, and CoA-SH, whereas its 3 products are benzoyl-S-CoA, CO2, and NADH.

This enzyme belongs to the family of oxidoreductases, specifically those acting on the aldehyde or oxo group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is phenylglyoxylate:NAD+ oxidoreductase. It has 3 cofactors: FAD, Thiamin diphosphate, and Iron-sulfur.

Related Research Articles

<span class="mw-page-title-main">Carnitine 3-dehydrogenase</span>

In enzymology, a carnitine 3-dehydrogenase (EC 1.1.1.108) is an enzyme that catalyzes the chemical reaction

In enzymology, a D-malate dehydrogenase (decarboxylating) (EC 1.1.1.83) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Homoisocitrate dehydrogenase</span> Enzyme

In enzymology, a homoisocitrate dehydrogenase (EC 1.1.1.87) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Malate dehydrogenase (decarboxylating)</span> Enzyme

Malate dehydrogenase (decarboxylating) (EC 1.1.1.39) or NAD-malic enzyme (NAD-ME) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Malate dehydrogenase (oxaloacetate-decarboxylating)</span>

In enzymology, a malate dehydrogenase (oxaloacetate-decarboxylating) (EC 1.1.1.38) is an enzyme that catalyzes the chemical reaction below

In enzymology, an oxaloglycolate reductase (decarboxylating) (EC 1.1.1.92) is an enzyme that catalyzes the chemical reaction

In enzymology, a 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase (EC 1.3.1.25) is an enzyme that catalyzes the chemical reaction

In enzymology, an arogenate dehydrogenase (EC 1.3.1.43) is an enzyme that catalyzes the chemical reaction

In enzymology, an anthranilate 1,2-dioxygenase (deaminating, decarboxylating) (EC 1.14.12.1) is an enzyme that catalyzes the chemical reaction

In enzymology, a benzoyl-CoA 3-monooxygenase (EC 1.14.13.58) is an enzyme that catalyzes the chemical reaction:

In enzymology, a salicylate 1-monooxygenase (EC 1.14.13.1) is an enzyme that catalyzes the chemical reaction

In enzymology, a 2-oxoisovalerate dehydrogenase (acylating) (EC 1.2.1.25) is an enzyme that catalyzes the chemical reaction

In enzymology, a malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NADH peroxidase</span>

In enzymology, a NADH peroxidase (EC 1.11.1.1) is an enzyme that catalyzes the chemical reaction

Acrylyl-CoA reductase (NADH) (EC 1.3.1.95) is an enzyme with systematic name propanoyl-CoA:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction

NADH:ubiquinone reductase (Na+-transporting) (EC 1.6.5.8 is an enzyme with systematic name NADH:ubiquinone oxidoreductase (Na+-translocating). In bacteria, three different types of respiratory NADH:quinone oxidoreductases (NQr) have been described: the electrogenic complex I, also called NDH I in bacteria, the non-electrogenic NADH:quinone oxidoreductases (NDH II), and the Na+-translocating NADH:quinone oxidoreductases Na+-NQr. The common function of these transmembrane enzymes in respiration is to oxidize NADH using ubiquinone (Q) as electron acceptor. The net reaction thus yields ubiquinol (QH2), the reducing substrate of enzyme complexes further along the respiratory chain, and NAD+, which is used as oxidizing agent in numerous cellular processes.

<span class="mw-page-title-main">NADH:ubiquinone reductase (non-electrogenic)</span> Class of enzymes

NADH:ubiquinone reductase (non-electrogenic) (EC 1.6.5.9, NDH-2, ubiquinone reductase, coenzyme Q reductase, dihydronicotinamide adenine dinucleotide-coenzyme Q reductase, DPNH-coenzyme Q reductase, DPNH-ubiquinone reductase, NADH-coenzyme Q oxidoreductase, NADH-coenzyme Q reductase, NADH-CoQ oxidoreductase, NADH-CoQ reductase) is an enzyme with systematic name NADH:ubiquinone oxidoreductase. This enzyme catalyses the following chemical reaction:

NADH dehydrogenase is an enzyme that converts nicotinamide adenine dinucleotide (NAD) from its reduced form (NADH) to its oxidized form (NAD+). Members of the NADH dehydrogenase family and analogues are commonly systematically named using the format NADH:acceptor oxidoreductase. The chemical reaction these enzymes catalyze is generally represented with the following equation:

Dichloroarcyriaflavin A synthase (EC 1.13.12.17) is an enzyme with systematic name dichlorochromopyrrolate,NADH:oxygen 2,5-oxidoreductase (dichloroarcyriaflavin A-forming). This enzyme catalyses the following chemical reaction

6-Hydroxynicotinate 3-monooxygenase (EC 1.14.13.114, NicC, 6HNA monooxygenase, HNA-3-monooxygenase) is an enzyme with systematic name 6-hydroxynicotinate,NADH:oxygen oxidoreductase (3-hydroxylating, decarboxylating). This enzyme catalyses the following chemical reaction

References