Names | |
---|---|
Preferred IUPAC name 2H-1,3-Benzodioxole-5-carbaldehyde | |
Other names Heliotropin; Heliotropine; Piperonyl aldehyde; Protocatechuic aldehyde methylene ether; 3,4-methylenedioxybenzaldehyde; | |
Identifiers | |
3D model (JSmol) | |
131691 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.004.009 |
EC Number |
|
4186 | |
KEGG | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C8H6O3 | |
Molar mass | 150.133 g·mol−1 |
Appearance | Colorless crystals [1] |
Density | 1.337 g/cm3 |
Melting point | 37 °C (99 °F; 310 K) [1] |
Boiling point | 263 °C (505 °F; 536 K) [1] |
Soluble in 500 parts [1] | |
Hazards | |
GHS labelling: | |
Warning | |
H317 | |
P261, P272, P280, P302+P352, P321, P333+P313, P363, P501 | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) | 2700 mg/kg (orally in rats) [1] |
Legal status | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Piperonal, also known as heliotropin, is an organic compound which is commonly found in fragrances and flavors. [3] The molecule is structurally related to other aromatic aldehydes such as benzaldehyde and vanillin.
Piperonal naturally occurs in various plants. Examples include dill, vanilla, violet flowers, and black pepper.
Piperonal can be prepared by the oxidative cleavage of isosafrole or by using a multistep sequence from catechol or 1,2-methylenedioxybenzene. Synthesis from the latter chemical is accomplished through a condensation reaction with glyoxylic acid followed by cleaving the resulting α-hydroxy acid with an oxidizing agent. [3] [4] [5] Synthesis from catechol requires an additional step, Williamson ether synthesis using dichloromethane. [6]
Piperonal, like all aldehydes, can be reduced to its alcohol (piperonyl alcohol) or oxidized to give its acid (piperonylic acid).
Piperonal can be used in the synthesis of some pharmaceutical drugs including tadalafil, [7] L-DOPA, [8] and atrasentan. [9]
Piperonal has a floral odor which is commonly described as being similar to that of vanillin or cherry. For this reason it is commonly used in fragrances and artificial flavors. [3] The compound was named heliotropin after the 'cherry pie' notes found in the heliotrope flower's fragrance (even though the chemical is not present in the flower's true aroma). [10] Perfumers began to use the fragrance for the first time by the early 1880s. [11] It is commonly used to add vanilla or almond nuances, generally imparting balsamic, powdery, and floral aspects to a scent's character. [12]
Piperonyl acetate is a synthetic cherry flavoring. [13]
Due to their role in the manufacture of MDMA, safrole, isosafrole, and piperonal are Category I precursors under regulation no. 273/2004 of the European Community. [14]
In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.
Vanillin is an organic compound with the molecular formula C8H8O3. It is a phenolic aldehyde. Its functional groups include aldehyde, hydroxyl, and ether. It is the primary component of the extract of the vanilla bean. Synthetic vanillin is now used more often than natural vanilla extract as a flavoring in foods, beverages, and pharmaceuticals.
Safrole is an organic compound with the formula CH2O2C6H3CH2CH=CH2. It is a colorless oily liquid, although impure samples can appear yellow. A member of the phenylpropanoid family of natural products, it is found in sassafras plants, among others. Small amounts are found in a wide variety of plants, where it functions as a natural antifeedant. Ocotea pretiosa, which grows in Brazil, and Sassafras albidum, which grows in eastern North America, are the main natural sources of safrole. It has a characteristic "sweet-shop" aroma.
Catechol, also known as pyrocatechol or 1,2-dihydroxybenzene, is an organic compound with the molecular formula C6H4(OH)2. It is the ortho isomer of the three isomeric benzenediols. This colorless compound occurs naturally in trace amounts. It was first discovered by destructive distillation of the plant extract catechin. About 20,000 tonnes of catechol are now synthetically produced annually as a commodity organic chemical, mainly as a precursor to pesticides, flavors, and fragrances. Small amounts of catechol occur in fruits and vegetables.
The Cannizzaro reaction, named after its discoverer Stanislao Cannizzaro, is a chemical reaction which involves the base-induced disproportionation of two molecules of a non-enolizable aldehyde to give a primary alcohol and a carboxylic acid.
Calcium hypochlorite is an inorganic compound with chemical formula Ca(ClO)2, also written as Ca(OCl)2. It is a white solid, although commercial samples appear yellow. It strongly smells of chlorine, owing to its slow decomposition in moist air. This compound is relatively stable as a solid and solution and has greater available chlorine than sodium hypochlorite. "Pure" samples have 99.2% active chlorine. Given common industrial purity, an active chlorine content of 65-70% is typical. It is the main active ingredient of commercial products called bleaching powder, used for water treatment and as a bleaching agent.
2-Iodoxybenzoic acid (IBX) is an organic compound used in organic synthesis as an oxidizing agent. This periodinane is especially suited to oxidize alcohols to aldehydes. IBX is most often prepared from 2-iodobenzoic acid and a strong oxidant such as potassium bromate and sulfuric acid, or more commonly, oxone. One of the main drawbacks of IBX is its limited solubility; IBX is insoluble in many common organic solvents. IBX is an impact- and heat-sensitive explosive (>200°C). Commercial IBX is stabilized by carboxylic acids such as benzoic acid and isophthalic acid.
Isosafrole is an organic compound that is used in the fragrance industry. Structurally, the molecule is related to allylbenzene, a type of aromatic organic chemical. Its fragrance is reminiscent of anise or licorice. It is found in small amounts in various essential oils, but is most commonly obtained by isomerizing the plant oil safrole. It exists as two geometric isomers, cis-isosafrole and trans-isosafrole.
Isovanillin is a phenolic aldehyde, an organic compound and isomer of vanillin. It is a selective inhibitor of aldehyde oxidase. It is not a substrate of that enzyme, and is metabolized by aldehyde dehydrogenase into isovanillic acid, which could make it a candidate drug for use in alcohol aversion therapy. Isovanillin can be used as a precursor in the chemical total synthesis of morphine. The proposed metabolism of isovanillin in rat has been described in literature, and is part of the WikiPathways machine readable pathway collection.
Guaiacol is an organic compound with the formula C6H4(OH)(OCH3). It is a phenolic compound containing a methoxy functional group. Guaiacol appears as a viscous colorless oil, although aged or impure samples are often yellowish. It occurs widely in nature and is a common product of the pyrolysis of wood.
4-Anisaldehyde, or p-Anisaldehyde, is an organic compound with the formula CH3OC6H4CHO. The molecule consists of a benzene ring with a formyl and a methoxy group. It is a colorless liquid with a strong aroma. It provides sweet, floral and strong aniseed odor. Two isomers of 4-anisaldehyde are known, ortho-anisaldehyde and meta-anisaldehyde. They are less commonly encountered.
Salicylic aldehyde (2-hydroxybenzaldehyde) is an organic compound with the formula C6H4OH(CHO). Along with 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde, it is one of the three isomers of hydroxybenzaldehyde. This colorless oily liquid has a bitter almond odor at higher concentration. Salicylaldehyde is a precursor to coumarin and a variety of chelating agents.
Alpha hydroxy carboxylic acids, or α-hydroxy carboxylic acids (AHAs), are a group of carboxylic acids featuring a hydroxy group located one carbon atom away from the acid group. This structural aspect distinguishes them from beta hydroxy acids, where the functional groups are separated by two carbon atoms. Notable AHAs include glycolic acid, lactic acid, mandelic acid, and citric acid.
The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H2O2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.
Phenylacetaldehyde is an organic compound used in the synthesis of fragrances and polymers. Phenylacetaldehyde is an aldehyde that consists of acetaldehyde bearing a phenyl substituent; the parent member of the phenylacetaldehyde class of compounds. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an alpha-CH2-containing aldehyde and a member of phenylacetaldehydes.
Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is among the simplest aromatic aldehydes and one of the most industrially useful.
Piperic acid is a chemical often obtained by the base-hydrolysis of the alkaloid piperine from black pepper, followed by acidification of the corresponding salt. Piperic acid is an intermediate in the synthesis of other compounds such as piperonal, and as-such may be used to produce fragrances, perfumes flavorants and drugs as well as other useful compounds.
Helional is a chemical compound used as a perfume in soap and laundry detergent. Chemically it is an aldehyde with a hydrocinnamaldehyde motif; a structural element which is present in a number of other important commercial fragrances and odorants.
Fétizon oxidation is the oxidation of primary and secondary alcohols utilizing the compound silver(I) carbonate absorbed onto the surface of celite also known as Fétizon's reagent first employed by Marcel Fétizon in 1968. It is a mild reagent, suitable for both acid and base sensitive compounds. Its great reactivity with lactols makes the Fétizon oxidation a useful method to obtain lactones from a diol. The reaction is inhibited significantly by polar groups within the reaction system as well as steric hindrance of the α-hydrogen of the alcohol.
5-Nitrovanillin (4-hydroxy-3-methoxy-5-nitrobenzaldehyde) is a derivative of vanillin in which the hydrogen ortho- to the hydroxy group is substituted by a nitro group. Because it contains many reactive functional groups – in addition to the nitro group, a hydroxyl group, a methoxy group and an aldehyde group are present – 5-nitrovanillin is suitable as a starting material for the synthesis of phenethylamines, for coenzyme Q and for the inhibitors of catechol-O-methyltransferase that are effective against Parkinson's disease.