This article needs more reliable medical references for verification or relies too heavily on primary sources .(October 2021) |
Poor ovarian reserve | |
---|---|
Other names | Impaired ovarian reserve, premature ovarian aging, declining ovarian reserve |
Specialty | Gynecology |
Poor ovarian reserve is a condition of low fertility characterized by 1): low numbers of remaining oocytes in the ovaries or 2) possibly impaired preantral oocyte development or recruitment. Recent research suggests that premature ovarian aging and premature ovarian failure (aka primary ovarian insufficiency) may represent a continuum of premature ovarian senescence. [1] It is usually accompanied by high FSH (follicle stimulating hormone) levels.
Quality of the eggs may also be impaired. [2] [3] However, other studies show no association with elevated FSH levels and genetic quality of embryos after adjusting for age. The decline in quality was age related, not FSH related as the younger women with high day three FSH levels had higher live birth rates than the older women with high FSH. There was no significant difference in genetic embryo quality between same aged women regardless of FSH levels. [4] [5] A 2008 study concluded that diminished reserve did not affect the quality of oocytes and any reduction in quality in diminished reserve women was age related. [6] One expert concluded: in young women with poor reserve when eggs are obtained they have near normal rates of implantation and pregnancy rates, but they are at high risk for IVF cancellation; if eggs are obtained, pregnancy rates are typically better than in older woman with normal reserve. However, if the FSH level is extremely elevated these conclusions are likely not applicable. [7]
There is some controversy as the accuracy of the tests used to predict poor ovarian reserve. One systematic review concluded that the accuracy of predicting the occurrence of pregnancy is very limited. When a high threshold is used, to prevent couples from wrongly being refused IVF, only approximately 3% of IVF-indicated cases are identified as having unfavourable prospects in an IVF treatment cycle. Also, the review concluded the use of any ORT (Ovarian Reserve Testing) for outcome prediction cannot be supported. [13] Also Centers for Disease Control and Prevention statistics show that the success rates for IVF with diminished ovarian reserve vary widely between IVF centers. [14]
Elevated serum follicle stimulating hormone (FSH) level measured on day three of the menstrual cycle. (First day of period flow is counted as day one. Spotting is not considered start of period.) If a lower value occurs from later testing, the highest value is considered the most predictive. FSH assays can differ somewhat so reference ranges as to what is normal, premenopausal or menopausal should be based on ranges provided by the laboratory doing the testing. Estradiol (E2) should also be measured as women who ovulate early may have elevated E2 levels above 80 pg/mL (due to early follicle recruitment, possibly due to a low serum inhibin B level) which will mask an elevated FSH level and give a false negative result. [15]
High FSH strongly predicts poor IVF response in older women, less so in younger women. One study showed an elevated basal day-three FSH is correlated with diminished ovarian reserve in women aged over 35 years and is associated with poor pregnancy rates after treatment of ovulation induction (6% versus 42%). [16]
The rates for spontaneous pregnancy in older women with elevated FSH levels have not been studied very well and the spontaneous pregnancy success rate, while low, may be underestimated due to non reporting bias, as most infertility clinics will not accept women over the age of forty with FSH levels in the premenopausal range or higher.[ citation needed ]
A woman can have a normal day-three FSH level yet still respond poorly to ovarian stimulation and hence can be considered to have poor reserve. Thus, another FSH-based test is often used to detect poor ovarian reserve: the clomid challenge test, also known as CCCT (clomiphene citrate challenge test).[ citation needed ]
Transvaginal ultrasonography can be used to determine antral follicle count (AFC). This is an easy-to-perform and noninvasive method (but there may be some discomfort). Several studies show this test to be more accurate than basal FSH testing for older women (< 44 years of age) in predicting IVF outcome. [17] This method of determining ovarian reserve is recommended by Dr. Sherman J. Silber, author and medical director of the Infertility Center of St. Louis. [18]
AFC and Median Fertile Years Remaining [19] [20]
Antral Follicle Count (Per Ovary [See comment below as these figures are under dispute.]) | Median Years to Last Child | Median Years to Menopause |
---|---|---|
5 | __ | 7.3 |
10 | 4.2 | 12.9 |
15 | 9.3 | 18.4 |
20 | 14.8 | 24.0 |
Note, the above table from Silber's book may be in error as it has no basis in any scientific study, and contradicts data from Broekmans, et al. 2004 study. [21] The above table closely matches Broekmans' data only if interpreted as the total AFC of both ovaries. Only antral follicles that were 2–10 mm in size were counted in Broekmans' study.
Age and AFC and Age of Loss of Natural Fertility (See Broekmans, et al. [2004])
Antral Follicle Count (Both Ovaries) | Age at Time of Count | Age of Loss of Natural Fertility |
---|---|---|
6 | 30 | 29–33 |
6 | 35 | 33–38 |
6 | 40 | 38–41 |
10 | 30 | 33–38 |
10 | 35 | 38–41 |
15 | 30 | 38–41 (closer to 41) |
AFC and FSH Stimulation Recommendations for Cycles Using Assisted Reproduction Technology [22]
Antral Follicle Count | Significance |
---|---|
< 4 | Poor reserve |
4–7 | Low count, high dosage of FSH required |
8–12 | Slightly reduced reserve |
> 12 | Normal |
Variable success rate with treatment, very few controlled studies, mostly case reports. Treatment success strongly tends to diminish with age and degree of elevation of FSH.
While the primary cause of the end to menstrual cycles is the exhaustion of ovarian follicles, there is some evidence that a defect in the hypothalamus is critical in the transition from regular to irregular cycles. This is supported by at least one study in which transplantation of ovaries from old rats to young ovariectomized rats resulted in follicular development and ovulation. Also, electrical stimulation of the hypothalamus is capable of restoring reproductive function in aged animals. Due to the complex interrelationship among the hypothalamus, pituitary and ovaries (HPO axis) defects in the functioning of one level can cause defects on the other levels. [49]
The ovary is a gonad in the female reproductive system that produces ova; when released, an ovum travels through the fallopian tube/oviduct into the uterus. There is an ovary on the left and the right side of the body. The ovaries are endocrine glands, secreting various hormones that play a role in the menstrual cycle and fertility. The ovary progresses through many stages beginning in the prenatal period through menopause.
Luteinizing hormone is a hormone produced by gonadotropic cells in the anterior pituitary gland. The production of LH is regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In females, an acute rise of LH known as an LH surge, triggers ovulation and development of the corpus luteum. In males, where LH had also been called interstitial cell–stimulating hormone (ICSH), it stimulates Leydig cell production of testosterone. It acts synergistically with follicle-stimulating hormone (FSH).
Follicle-stimulating hormone (FSH) is a gonadotropin, a glycoprotein polypeptide hormone. FSH is synthesized and secreted by the gonadotropic cells of the anterior pituitary gland and regulates the development, growth, pubertal maturation, and reproductive processes of the body. FSH and luteinizing hormone (LH) work together in the reproductive system.
Anovulation is when the ovaries do not release an oocyte during a menstrual cycle. Therefore, ovulation does not take place. However, a woman who does not ovulate at each menstrual cycle is not necessarily going through menopause. Chronic anovulation is a common cause of infertility.
Fertility medications, also known as fertility drugs, are medications which enhance reproductive fertility. For women, fertility medication is used to stimulate follicle development of the ovary. There are very few fertility medication options available for men.
Anti-Müllerian hormone (AMH), also known as Müllerian-inhibiting hormone (MIH), is a glycoprotein hormone structurally related to inhibin and activin from the transforming growth factor beta superfamily, whose key roles are in growth differentiation and folliculogenesis. In humans, it is encoded by the AMH gene, on chromosome 19p13.3, while its receptor is encoded by the AMHR2 gene on chromosome 12.
In biology, folliculogenesis is the maturation of the ovarian follicle, a densely packed shell of somatic cells that contains an immature oocyte. Folliculogenesis describes the progression of a number of small primordial follicles into large preovulatory follicles that occurs in part during the menstrual cycle.
Ovarian reserve is a term that is used to determine the capacity of the ovary to provide egg cells that are capable of fertilization resulting in a healthy and successful pregnancy. With advanced maternal age, the number of egg cell that can be successfully recruited for a possible pregnancy declines, constituting a major factor in the inverse correlation between age and female fertility.
Primary ovarian insufficiency (POI), also called premature ovarian insufficiency, premature menopause, and premature ovarian failure, is the partial or total loss of reproductive and hormonal function of the ovaries before age 40 because of follicular dysfunction or early loss of eggs. POI can be seen as part of a continuum of changes leading to menopause that differ from age-appropriate menopause in the age of onset, degree of symptoms, and sporadic return to normal ovarian function. POI affects approximately 1 in 10,000 women under age 20, 1 in 1,000 women under age 30, and 1 in 100 of those under age 40. A medical triad for the diagnosis is amenorrhea, hypergonadotropism, and hypoestrogenism.
Ovulation induction is the stimulation of ovulation by medication. It is usually used in the sense of stimulation of the development of ovarian follicles to reverse anovulation or oligoovulation.
An antral or secondary follicle, also known as Graafian follicle and tertiary follicle, is an ovarian follicle during a certain latter stage of folliculogenesis.
Controlled ovarian hyperstimulation is a technique used in assisted reproduction involving the use of fertility medications to induce ovulation by multiple ovarian follicles. These multiple follicles can be taken out by oocyte retrieval for use in in vitro fertilisation (IVF), or be given time to ovulate, resulting in superovulation which is the ovulation of a larger-than-normal number of eggs, generally in the sense of at least two. When ovulated follicles are fertilised in vivo, whether by natural or artificial insemination, there is a very high risk of a multiple pregnancy.
In vitro maturation (IVM) is the technique of letting the contents of ovarian follicles and the oocytes inside mature in vitro. It can be offered to women with infertility problems, combined with In Vitro Fertilization (IVF), offering women pregnancy without ovarian stimulation.
Gonadotropin preparations are drugs that mimic the physiological effects of gonadotropins, used therapeutically mainly as fertility medication for ovarian hyperstimulation and ovulation induction. For example, the so-called menotropins consist of LH and FSH extracted from human urine from menopausal women. There are also recombinant variants.
Fertility testing is the process by which fertility is assessed, both generally and also to find the "fertile window" in the menstrual cycle. General health affects fertility, and STI testing is an important related field.
Infertility in polycystic ovary disease (PCOS) is a hormonal imbalance in women that is thought to be one of the leading causes of female infertility. Polycystic ovary syndrome causes more than 75% of cases of anovulatory infertility.
Induction of final maturation of oocytes is a procedure that is usually performed as part of controlled ovarian hyperstimulation to render the oocytes fully developed and thereby resulting in optimal pregnancy chances. It is basically a replacement for the luteinizing hormone (LH) surge whose effects include final maturation in natural menstrual cycles.
Ovarian follicle activation can be defined as primordial follicles in the ovary moving from a quiescent (inactive) to a growing phase. The primordial follicle in the ovary is what makes up the “pool” of follicles that will be induced to enter growth and developmental changes that change them into pre-ovulatory follicles, ready to be released during ovulation. The process of development from a primordial follicle to a pre-ovulatory follicle is called folliculogenesis.
Gonadotropin surge-attenuating factor (GnSAF) is a nonsteroidal ovarian hormone produced by the granulosa cells of small antral ovarian follicles in females. GnSAF is involved in regulating the secretion of luteinizing hormone (LH) from the anterior pituitary and the ovarian cycle. During the early to mid-follicular phase of the ovarian cycle, GnSAF acts on the anterior pituitary to attenuate LH release, limiting the secretion of LH to only basal levels. At the transition between follicular and luteal phase, GnSAF bioactivity declines sufficiently to permit LH secretion above basal levels, resulting in the mid-cycle LH surge that initiates ovulation. In normally ovulating women, the LH surge only occurs when the oocyte is mature and ready for extrusion. GnSAF bioactivity is responsible for the synchronised, biphasic nature of LH secretion.
Female fertility agents are medications that improve female’s ability to conceive pregnancy. These agents are prescribed for infertile female who fails to conceive pregnancy after 1-year of regular and unprotected sexual intercourse. The following will cover the advancements of female fertility agents, major causes of female infertility. Next, it emphasizes on common female fertility agents in terms of their mechanism of action, side effects, fetal consideration and clinical application and ended up by the introduction of supplements and herbal medicines for female infertility.