Pre-Noachian

Last updated
Pre-Noachian
4500 – 4100 Ma
N
H
A
Hesperia Topo Map.jpg
MOLA colorized relief and elevation map of the Hesperia Planum region. Hesperia Planum is considered to show aspects of Mars' geological evolution from the Pre-Noachian to the Noachian periods. It showcases lowlands representing the Pre-Noachian landscape, alongside higher terrain indicative of the Noachian era.
Usage information
Celestial body Mars
Time scale(s) usedMartian Geologic Timescale

The Pre-Noachian is a geologic system and early time period on the planet Mars characterized by intense meteorite and asteroid impacts, volcanic and tectonic activity, and the potential existence of surface or subsurface water. [1] This era represents a crucial phase in Mars' history, witnessing the planet's formation, and the shaping of its geological landscape. However, the Pre-Noachian period remains elusive, being the least understood among Mars' four geological phases. Erosion and deposition have obscured much of the evidence from this time period on Mars.

Contents

The Pre-Noachian period created lowlands on the northern hemisphere of Mars, potentially serving as reservoirs for ancient Martian water during later periods. These lowlands might have formed through lava erosion caused by extensive volcanic activity during this era, as the Pre-Noachian time period experienced the highest level of volcanic activity among all Martian epochs. [1]

During the Pre-Noachian period, Mars' atmosphere was denser than it is today, with higher concentrations of carbon dioxide stemming from volcanic, asteroid, comet, and meteorite outgases. This may have contributed to a possible greenhouse effect on Mars and the formation of silicates, iron oxide, sulfates, carbonates, clays, and hydrates, created from extensive heat. [2] It is believed that as a result of meteorite outgassing, water vapor condensed into Mars' atmosphere. As the planet cooled, this water vapor precipitated onto the surface, forming oceans across Mars during subsequent time periods. [1] Over time, the gases retained by Mars' gravity during the Pre-Noachian period have gradually outgassed from the planet's atmosphere. This occurs as the molecules become too heavy and dense to be contained in a cooler environment, leading to their release into space. [1]

During this time, Mars had a distinct magnetic field because its core was active. As magma cooled in the planet's lower layers, it formed metals necessary to make the magnetic field. [3]

Description and name origin

The Pre-Noachian System and Period is named after Noachis Terra, a region of highlands west of the Hellas Planitia basin, and the pre comes from the word meaning before. [4] (See Description and name origin on the Wikipedia page for the Noachian era on Mars for more information)

Pre-Noachian chronology and stratigraphy

Schematic cross section of image at left. Surface units are interpreted as a sequence of layers (strata), with the youngest at top and oldest at bottom in accordance with the law of superposition. Mars Cross Section.tif
Schematic cross section of image at left. Surface units are interpreted as a sequence of layers (strata), with the youngest at top and oldest at bottom in accordance with the law of superposition.
HiRISE image illustrating superpositioning, a principle that lets geologists determine the relative ages of surface units. The dark-toned lava flow overlies (is younger than) the light-toned, more heavily cratered terrain at right. The ejecta of the crater at center overlies both units, indicating that the crater is the youngest feature in the image. (See cross section, above right.) Lava flow and crater ejecta.JPG
HiRISE image illustrating superpositioning, a principle that lets geologists determine the relative ages of surface units. The dark-toned lava flow overlies (is younger than) the light-toned, more heavily cratered terrain at right. The ejecta of the crater at center overlies both units, indicating that the crater is the youngest feature in the image. (See cross section, above right.)

Martian time periods are based on geologic mapping of surface units from spacecraft images. A surface unit is a terrain with a distinct texture, color, albedo, spectral property, or set of landforms that distinguish it from other surface units and is large enough to be shown on a map. Mappers use a stratigraphic approach pioneered in the early 1960s for photogeologic studies of the Moon. [5] Although based on surface characteristics, a surface unit is not the surface itself or group of landforms. It is an inferred geologic unit (e.g., formation) representing a sheetlike, wedgelike, or tabular body of rock that underlies the surface. [6] [7] A surface unit may be a crater ejecta deposit, lava flow, or any surface that can be represented in three dimensions as a discrete stratum bound above or below by adjacent units (illustrated right). Using principles such as superpositioning (illustrated left), cross-cutting relationships, and the relationship of impact crater density to age, geologists can place the units into a relative age sequence from oldest to youngest. Units of similar age are grouped globally into larger, time-stratigraphic (chronostratigraphic) units, called systems. For Mars, four systems are defined: the Pre-Noachian Noachian, Hesperian, and Amazonian. Geologic units lying below (older than) the Noachian are informally designated Pre-Noachian. [8] The geologic time (geochronologic) equivalent of the Pre-Noachian System is the Pre-Noachian Period. Rock or surface units of the Pre-Noachian System were formed or deposited during the Pre-Noachian Period.

System vs. Period

e   h
Segments of rock (strata) in chronostratigraphy Periods of time in geochronology Notes (Mars)
Eonothem Eon not used for Mars
Erathem Era not used for Mars
System Period 3 total; 108 to 109 years in length
Series Epoch 8 total; 107 to 108 years in length
Stage Age not used for Mars
Chronozone Chron smaller than an age/stage; not used by the ICS timescale

System and Period are not interchangeable terms in formal stratigraphic nomenclature, although they are frequently confused in popular literature. A system is an idealized stratigraphic column based on the physical rock record of a type area (type section) correlated with rocks sections from many different locations planetwide. [10] A system is bound above and below by strata with distinctly different characteristics (on Earth, usually index fossils) that indicate dramatic (often abrupt) changes in the dominant fauna or environmental conditions. (See Cretaceous–Paleogene boundary as example.)

At any location, rock sections in a given system are apt to contain gaps (unconformities) analogous to missing pages from a book. In some places, rocks from the system are absent entirely due to nondeposition or later erosion. For example, rocks of the Cretaceous System are absent throughout much of the eastern central interior of the United States. However, the time interval of the Cretaceous (Cretaceous Period) still occurred there. Thus, a geologic period represents the time interval over which the strata of a system were deposited, including any unknown amounts of time present in gaps. [10] Periods are measured in years, determined by radioactive dating. On Mars, radiometric ages are not available except from Martian meteorites whose provenance and stratigraphic context are unknown. Instead, absolute ages on Mars are determined by impact crater density, which is heavily dependent upon models of crater formation over time. [11] Accordingly, the beginning and end dates for Martian periods are uncertain, especially for the Hesperian/Amazonian boundary, which may be in error by a factor of 2 or 3. [8] [12]

Boundaries and subdivisions

The lower boundary of the Pre-Noachian period on Mars is characterized by the emergence of significant geological activity and the initial shaping of the planet's surface during its early history. This boundary is defined by the presence of ancient cratered terrains, volcanic constructs, and impact ejecta deposits dating back to the earliest stages of Martian geological development. While the precise location of this boundary may vary depending on geological context and criteria used for its definition, it marks the beginning of Mars’ geological history as understood by scientists.

In the Pre-Noachian period, the eastern region of Mars featured ridged plains overlaying early to mid-Noachian aged cratered plateau materials. This period marked a significant phase in Mars’ geological history, preceding the Noachian era characterized by its own distinct geological features and processes.

The Pre-Noachian System is subdivided into two chronostratigraphic series: Lower Pre-Noachian and Upper Pre-Noachian. These series are delineated based on specific references or locations on Mars where surface units indicate distinctive geological episodes, identifiable by cratering age and stratigraphic position. For example, Hesperia Planum serves as the referent location for the Lower Pre-Noachian Series. The corresponding geologic time units for the two Pre-Noachian series are the Early Pre-Noachian and Late Pre-Noachian Epochs. It's important to note that an epoch is a subdivision of a period, and the terms are not synonymous in formal stratigraphy. The age of the Early Pre-Noachian/Late Pre-Noachian boundary remains uncertain, with estimates ranging from 4500 to 4100 million years ago based on crater counts. [13] [14]

Stratigraphic terms are often confusing to geologists and non-geologists alike. One way to sort through the difficulty is by the following example: You can easily go to Cincinnati, Ohio and visit a rock outcrop in the Upper Ordovician Series of the Ordovician System. You can even collect a fossil trilobite there. However, you cannot visit the Late Ordovician Epoch in the Ordovician Period and collect an actual trilobite.

The Earth-based scheme of formal stratigraphic nomenclature has been successfully applied to Mars for several decades now but has numerous flaws. The scheme will no doubt become refined or replaced as more and better data become available. [15] (See mineralogical timeline below as example of alternative.) Obtaining radiometric ages on samples from identified surface units is clearly necessary for a more complete understanding of Martian history and chronology. [16]

Mars during the Pre-Noachian Period

While not directly depicting Mars, this image serves as an illustration of the possible appearance of Mars during the Pre-Noachian period. Volcanic planet 7 r 1.png
While not directly depicting Mars, this image serves as an illustration of the possible appearance of Mars during the Pre-Noachian period.

During the Pre-Noachian period, Mars experienced significant geological and environmental dynamics. Intense volcanic activity sculpted the planet's surface through widespread eruptions, while impact cratering events left behind numerous craters across the Martian landscape. The atmosphere during this era was denser than in present times, likely containing higher concentrations of carbon dioxide and other gases, potentially contributing to a greenhouse effect. This atmospheric composition may have facilitated conditions conducive to the presence of liquid water on the surface, with evidence suggesting the existence of water bodies such as lakes, rivers, and possibly even oceans. Geological features such as valleys, channels, and basins formed during this period further support the notion of liquid water on ancient Mars. The Pre-Noachian period stands as a crucial era in Martian history, characterized by dynamic geological processes and the potential for liquid water, laying the groundwork for subsequent epochs of Martian evolution. [1] [13]

Related Research Articles

<span class="mw-page-title-main">Lunar geologic timescale</span> Geological dating system of the Moon

The lunar geological timescale divides the history of Earth's Moon into five generally recognized periods: the Copernican, Eratosthenian, Imbrian, Nectarian, and Pre-Nectarian. The boundaries of this time scale are related to large impact events that have modified the lunar surface, changes in crater formation through time, and the size-frequency distribution of craters superposed on geological units. The absolute ages for these periods have been constrained by radiometric dating of samples obtained from the lunar surface. However, there is still much debate concerning the ages of certain key events, because correlating lunar regolith samples with geological units on the Moon is difficult, and most lunar radiometric ages have been highly affected by an intense history of bombardment.

<span class="mw-page-title-main">Alba Mons</span> Martian volcano

Alba Mons is a volcano located in the northern Tharsis region of the planet Mars. It is the biggest volcano on Mars in terms of surface area, with volcanic flow fields that extend for at least 1,350 km (840 mi) from its summit. Although the volcano has a span comparable to that of the United States, it reaches an elevation of only 6.8 km (22,000 ft) at its highest point. This is about one-third the height of Olympus Mons, the tallest volcano on the planet. The flanks of Alba Mons have very gentle slopes. The average slope along the volcano's northern flank is 0.5°, which is over five times lower than the slopes on the other large Tharsis volcanoes. In broad profile, Alba Mons resembles a vast but barely raised welt on the planet's surface. It is a unique volcanic structure with no counterpart on Earth or elsewhere on Mars.

<span class="mw-page-title-main">Arabia Terra</span> Martian upland region

Arabia Terra is a large upland region in the north of Mars that lies mostly in the Arabia quadrangle, but a small part is in the Mare Acidalium quadrangle. It is densely cratered and heavily eroded. This battered topography indicates great age, and Arabia Terra is presumed to be one of the oldest terrains on the planet. It covers as much as 4,500 km (2,800 mi) at its longest extent, centered roughly at 21°N6°E with its eastern and southern regions rising 4 km (13,000 ft) above the north-west. Alongside its many craters, canyons wind through the Arabia Terra, many emptying into the large northern lowlands of the planet, which borders Arabia Terra to the north.

<span class="mw-page-title-main">Compact Reconnaissance Imaging Spectrometer for Mars</span> Visible-infrared spectrometer

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) was a visible-infrared spectrometer aboard the Mars Reconnaissance Orbiter searching for mineralogic indications of past and present water on Mars. The CRISM instrument team comprised scientists from over ten universities and was led by principal investigator Scott Murchie. CRISM was designed, built, and tested by the Johns Hopkins University Applied Physics Laboratory.

<span class="mw-page-title-main">Eberswalde (crater)</span> Crater on Mars

Eberswalde, formerly known as Holden NE, is a partially buried impact crater in Margaritifer Terra, Mars. Eberswalde crater lies just to the north of Holden, a large crater that may have been a lake. The 65.3-km-diameter crater, centered at 24°S, 33°W, is named after the German town of the same name, in accordance with the International Astronomical Union's rules for planetary nomenclature. It was one of the final four proposed landing sites for the Mars rover Mars Science Laboratory mission. This extraterrestrial geological feature lies situated within the Margaritifer Sinus quadrangle (MC-19) region of Mars. Although not chosen, it was considered a potential landing site for the Mars 2020 Perseverance rover, and in the second Mars 2020 Landing Site Workshop it survived the cut and was among the top eight sites still in the running.

<span class="mw-page-title-main">Geological history of Earth</span> The sequence of major geological events in Earths past

The geological history of the Earth follows the major geological events in Earth's past based on the geological time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System.

<span class="mw-page-title-main">Geology of solar terrestrial planets</span> Geology of Mercury, Venus, Earth, Mars and Ceres

The geology of solar terrestrial planets mainly deals with the geological aspects of the four terrestrial planets of the Solar System – Mercury, Venus, Earth, and Mars – and one terrestrial dwarf planet: Ceres. Earth is the only terrestrial planet known to have an active hydrosphere.

<span class="mw-page-title-main">Enipeus Vallis</span> Vallis on Mars

Enipeus Vallis is a valley in the northern hemisphere of the planet Mars. It is centered at lat. 37°N, long. 267°E in the Arcadia quadrangle (MC-3) between the large volcano Alba Mons and the Tempe Terra plateau. The valley follows a gently sinuous, north-south path for a distance of about 357 km (222 mi). It is likely an ancient watercourse that formed during the early Hesperian period, around 3.7 billion years ago.

<span class="mw-page-title-main">Ritchey (Martian crater)</span> Crater on Mars

Ritchey is a crater on Mars, located in the Coprates quadrangle at 28.8° South and 51° West. It measures 79 kilometers in diameter and was named after George W. Ritchey, an American astronomer (1864–1945). Ritchey lies south of Valles Marineris and north of Argyre Planitia, a large impact crater. There is strong evidence that it was once a lake.

Mars may contain ores that would be very useful to potential colonists. The abundance of volcanic features together with widespread cratering are strong evidence for a variety of ores. While nothing may be found on Mars that would justify the high cost of transport to Earth, the more ores that future colonists can obtain from Mars, the easier it would be to build colonies there.

<span class="mw-page-title-main">Denning (Martian crater)</span> Crater on Mars

Denning Crater is a large Noachian-age impact crater in the southwestern Terra Sabaea region of the southern Martian highlands, within the Sinus Sabaeus quadrangle. It is located to the northwest of the Hellas impact basin within the furthest outskirts of the Hellas debris apron. The crater is 165 km in diameter and likely formed during the Late Heavy Bombardment, a period of intense bolide impacts affecting the entirety of the Solar System; during the Hesperian period, aeolian processes caused significant degradation of the crater's rim features and infilled the crater's floor. Similar to other large craters in this region of Mars, wind-eroded features are sporadically found on the basin floor. The presence of wrinkle ridges of varying orientations within and around the Denning basin has been correlated to regional tectonic events, including the formation of the Hellas basin itself. The crater was named for British astronomer William Frederick Denning.

<span class="mw-page-title-main">Noachian</span> Geological system and early time period of Mars

The Noachian is a geologic system and early time period on the planet Mars characterized by high rates of meteorite and asteroid impacts and the possible presence of abundant surface water. The absolute age of the Noachian period is uncertain but probably corresponds to the lunar Pre-Nectarian to Early Imbrian periods of 4100 to 3700 million years ago, during the interval known as the Late Heavy Bombardment. Many of the large impact basins on the Moon and Mars formed at this time. The Noachian Period is roughly equivalent to the Earth's Hadean and early Archean eons when Earth's first life forms likely arose.

<span class="mw-page-title-main">Hesperian</span> Era of Mars geologic history

The Hesperian is a geologic system and time period on the planet Mars characterized by widespread volcanic activity and catastrophic flooding that carved immense outflow channels across the surface. The Hesperian is an intermediate and transitional period of Martian history. During the Hesperian, Mars changed from the wetter and perhaps warmer world of the Noachian to the dry, cold, and dusty planet seen today. The absolute age of the Hesperian Period is uncertain. The beginning of the period followed the end of the Late Heavy Bombardment and probably corresponds to the start of the lunar Late Imbrian period, around 3700 million years ago (Mya). The end of the Hesperian Period is much more uncertain and could range anywhere from 3200 to 2000 Mya, with 3000 Mya being frequently cited. The Hesperian Period is roughly coincident with the Earth's early Archean Eon.

<span class="mw-page-title-main">Hesperia Planum</span> Broad lava plain in the southern highlands of the planet Mars

Hesperia Planum is a broad lava plain in the southern highlands of the planet Mars. The plain is notable for its moderate number of impact craters and abundant wrinkle ridges. It is also the location of the ancient volcano Tyrrhena Mons. The Hesperian time period on Mars is named after Hesperia Planum.

<span class="mw-page-title-main">Groundwater on Mars</span> Water held in permeable ground

Rain and snow was a regular occurrence on Mars in the past; especially in the Noachian and early Hesperian epochs. Water was theorized to seep into the ground until it reached a formation that would not allow it to penetrate further. Water then accumulated forming a saturated layer. Deep aquifers may still exist.

<span class="mw-page-title-main">Composition of Mars</span> Branch of the geology of Mars

The composition of Mars covers the branch of the geology of Mars that describes the make-up of the planet Mars.

<span class="mw-page-title-main">Geological history of Mars</span> Physical evolution of the planet Mars

The geological history of Mars follows the physical evolution of Mars as substantiated by observations, indirect and direct measurements, and various inference techniques. Methods dating back to 17th-century techniques developed by Nicholas Steno, including the so-called law of superposition and stratigraphy, used to estimate the geological histories of Earth and the Moon, are being actively applied to the data available from several Martian observational and measurement resources. These include landers, orbiting platforms, Earth-based observations, and Martian meteorites.

<span class="mw-page-title-main">Amazonian (Mars)</span> Time period on Mars

The Amazonian is a geologic system and time period on the planet Mars characterized by low rates of meteorite and asteroid impacts and by cold, hyperarid conditions broadly similar to those on Mars today. The transition from the preceding Hesperian period is somewhat poorly defined. The Amazonian is thought to have begun around 3 billion years ago, although error bars on this date are extremely large. The period is sometimes subdivided into the Early, Middle, and Late Amazonian. The Amazonian continues to the present day.

<span class="mw-page-title-main">LARLE crater</span> Class of Martian impact craters

A low-aspect-ratio layered ejecta crater is a class of impact crater found on the planet Mars. This class of impact craters was discovered by Northern Arizona University scientist Professor Nadine Barlow and Dr. Joseph Boyce from the University of Hawaii in October 2013. Barlow described this class of craters as having a "thin-layered outer deposit" surpassing "the typical range of ejecta". "The combination helps vaporize the materials and create a base flow surge. The low aspect ratio refers to how thin the deposits are relative to the area they cover", Barlow said. The scientists used data from continuing reconnaissance of Mars using the old Mars Odyssey orbiter and the Mars Reconnaissance Orbiter. They discovered 139 LARLE craters ranging in diameter from 1.0 to 12.2 km, with 97% of the LARLE craters found poleward of 35N and 40S. The remaining 3% mainly traced in the equatorial Medusae Fossae Formation.

<span class="mw-page-title-main">Crommelin (Martian crater)</span> Crater on Mars

Crommelin is an impact crater in the Oxia Palus quadrangle of Mars, located at 5.1°N latitude and 10.2°W longitude. It is 113.9 km in diameter. It was named after British astronomer Andrew Crommelin (1865–1939), and the name was approved in 1973 by the International Astronomical Union (IAU) Working Group for Planetary System Nomenclature (WGPSN).

References

  1. 1 2 3 4 5 "The ages of Mars". Mars Express - European Space Agency (ESA). Retrieved 25 March 2024.
  2. Dyar, M. D. (2013). "Mars mineralogy: A review of current terrestrial analogs and a proposed new framework". Planetary and Space Science. 86: 27–35. Bibcode:2013P&SS...86...27D. doi:10.1016/j.pss.2013.05.003.
  3. Halliday, A. J.; Nimmo, F.; Wilson, M. J. R.; Anbar, A. D. (2010). "Mars: Evidence for a Dry Climate from Recent Mass Balance of Atmosphere and Ice". Earth and Planetary Science Letters. 294 (3–4): 538–546. doi:10.1016/j.epsl.2009.12.041.
  4. Amos, Jonathan (10 September 2012). "Clays in Pacific Lavas Challenge Wet Early Mars Idea". BBC News .
  5. See Mutch, T.A. (1970). Geology of the Moon: A Stratigraphic View; Princeton University Press: Princeton, NJ, 324 pp. and Wilhelms, D.E. (1987). The Geologic History of the Moon, USGS Professional Paper 1348; http://ser.sese.asu.edu/GHM/ for reviews of this topic.
  6. Wilhelms, D.E. (1990). Geologic Mapping in Planetary Mapping, R. Greeley, R.M. Batson, Eds.; Cambridge University Press: Cambridge UK, p. 214.
  7. Tanaka, K.L.; Scott, D.H.; Greeley, R. (1992). Global Stratigraphy in Mars, H.H. Kieffer et al., Eds.; University of Arizona Press: Tucson, AZ, pp. 345–382.
  8. 1 2 Nimmo, F.; Tanaka, K. (2005). "Early Crustal Evolution of Mars". Annual Review of Earth and Planetary Sciences. 33 (1): 133–161. Bibcode:2005AREPS..33..133N. doi:10.1146/annurev.earth.33.092203.122637.
  9. International Commission on Stratigraphy. "International Stratigraphic Chart" (PDF). Retrieved 2009-09-25.
  10. 1 2 Eicher, D.L.; McAlester, A.L. (1980). History of the Earth; Prentice-Hall: Englewood Cliffs, NJ, pp 143–146, ISBN   0-13-390047-9.
  11. Masson, P.; Carr, M.H.; Costard, F.; Greeley, R.; Hauber, E.; Jaumann, R. (2001). "Geomorphologic Evidence for Liquid Water". Chronology and Evolution of Mars. Space Sciences Series of ISSI. Vol. 96. p. 352. Bibcode:2001cem..book..333M. doi:10.1007/978-94-017-1035-0_12. ISBN   978-90-481-5725-9.{{cite book}}: |journal= ignored (help)
  12. Hartmann, W.K.; Neukum, G. (2001). Cratering Chronology and Evolution of Mars. In Chronology and Evolution of Mars, Kallenbach, R. et al. Eds., Space Science Reviews,96: 105–164.
  13. 1 2 Ehlmann, Bethany L.; Carter, John; Ernst, Carolyn M. (2017). "The stratigraphy and history of Mars' northern lowlands through mineralogy of impact craters: A comprehensive survey". Journal of Geophysical Research: Planets. 122 (6): 1226–1245. doi:10.1002/2017JE005276.
  14. Rodriguez, J. Alexis P.; Dobrea, Eldar Noe; Kargel, Jeffrey S.; Baker, V. R.; Crown, David A.; Webster, Kevin D.; Berman, Daniel C.; Wilhelm, Mary Beth; Buckner, Denise (2020-04-24). "The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits". Scientific Reports. 10 (1): 7257. Bibcode:2020NatSR..10.7257Z. doi:10.1038/s41598-020-64676-z. PMC   7189948 . PMID   32332708 . Retrieved 2024-03-26.
  15. Tanaka, K.L. (2001). The Stratigraphy of Mars: What We Know, Don't Know, and Need to Do. 32nd Lunar and Planetary Science Conference, Abstract #1695. http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1695.pdf.
  16. Carr, 2006, p. 41.