Pronephros

Last updated
Pronephros
Details
Carnegie stage 10
Days20
Precursor nephrotome
Gives rise to mesonephros
Identifiers
MeSH D060910
TE E5.6.1.0.0.0.1
FMA 72170
Anatomical terminology

Pronephros is the most basic of the three excretory organs that develop in vertebrates, corresponding to the first stage of kidney development. It is succeeded by the mesonephros, which in fish and amphibians remains as the adult kidney. In amniotes, the mesonephros is the embryonic kidney and a more complex metanephros acts as the adult kidney. Once a more advanced kidney forms, the previous version typically degenerates by apoptosis or becomes part of the male reproductive system.

Contents

The pronephros develops from the intermediate mesoderm, as do the later kidneys. It is a paired organ, consisting of a single giant nephron that processes blood filtrate produced from glomeruli or glomera- large embryonic glomeruli. The filtrate is deposited into the coelom. It then passes through thin ciliated tubules into the pronephric nephron where it is processed for solute recovery.

The organ is active in adult forms of some primitive fish, like lampreys or hagfish. It is present at the embryo of more advanced fish and at the larval stage of amphibians where it plays an essential role in osmoregulation. In human beings, it is rudimentary, appears at the end of the third week (day 20) and replaced by mesonephros after 3.5 weeks. Despite this transient appearance in mammals, the pronephros is essential for the development of the adult kidneys. The duct of the mesonephros forms the Wolffian duct and ureter of the adult kidney. The embryonic kidney and its derivatives also produces the inductive signals that trigger formation of the adult kidney.

Development

The pronephros is the first in a sequence of kidneys that form in vertebrate embryos. The pronephric primordium develops from the intermediate mesoderm, lying between the paraxial (somitic) mesoderm and the lateral plate. In many organisms (e.g. amphibians) this primodium forms anteriorly then migrates posteriorly to fuse with the cloaca, while in others it forms along the length of the intermediate mesoderm.

Drainage

In both amphibians and zebrafish, the pronephros has a single nephron attached to a nephric duct, which in turn is linked to the cloaca. Although these kidneys have a simple anatomical organization with only a single nephron, the nephrons have a segmental and functional complexity that is very similar to that in more complex kidneys such as mesonephroi and metanephroi.

Filtration

One unique feature of pronephroi is the arrangement by which the glomerular filtrate is generated and collected by the nephron. In pronephroi the glomerulus (or glomus if it extends over multiple body segments) projects into the coelom rather than into the proximal tip of the nephron. The glomerular filtrate flows directly into the coelom, or a dorsal compartment of the coelom known as the nephrocoel. In jawless fishes, the pronephric glomus projects into the pericardial cavity. Fluids are swept from the filtration cavity into the nephron through ciliated funnels known as nephrostomes. These thin epithelial tubes are densely packed with cilia and have a distinct morphology to the other tubular epithelia of the kidney.

Relationship to nephrotomes

Older anatomical texts describe the pronephros as condensing from nephrotomes, but modern visualization techniques have shown that this represents a histological artifact.

In amphibians, fishes, and mammals

Once the more complex mesonephros forms the pronephros undergoes apoptosis in amphibians. In fishes, the nephron degenerates but the organ remains and becomes a component of the immune system.

In mammals, a functional pronephros, in the context of an organ performing waste excretion or osmoregulation, does not develop. However, a kidney primordium that runs along the intermediate mesoderm does form and links up to the cloaca. This duct is known as the pronephric duct, mesonephric duct or Wolffian duct. While this transient primordium never forms functional nephrons, the duct derived from it is essential to the development of the more complex later kidneys.

See also

Related Research Articles

<span class="mw-page-title-main">Kidney</span> Organ that filters blood and produces urine

In humans, the kidneys are two reddish-brown bean-shaped blood-filtering organs that are a multilobar, multipapillary form of mammalian kidneys, usually without signs of external lobulation. They are located on the left and right in the retroperitoneal space, and in adult humans are about 12 centimetres in length. They receive blood from the paired renal arteries; blood exits into the paired renal veins. Each kidney is attached to a ureter, a tube that carries excreted urine to the bladder.

<span class="mw-page-title-main">Nephron</span> Microscopic structural and functional unit of the kidney

The nephron is the minute or microscopic structural and functional unit of the kidney. It is composed of a renal corpuscle and a renal tubule. The renal corpuscle consists of a tuft of capillaries called a glomerulus and a cup-shaped structure called Bowman's capsule. The renal tubule extends from the capsule. The capsule and tubule are connected and are composed of epithelial cells with a lumen. A healthy adult has 1 to 1.5 million nephrons in each kidney. Blood is filtered as it passes through three layers: the endothelial cells of the capillary wall, its basement membrane, and between the foot processes of the podocytes of the lining of the capsule. The tubule has adjacent peritubular capillaries that run between the descending and ascending portions of the tubule. As the fluid from the capsule flows down into the tubule, it is processed by the epithelial cells lining the tubule: water is reabsorbed and substances are exchanged ; first with the interstitial fluid outside the tubules, and then into the plasma in the adjacent peritubular capillaries through the endothelial cells lining that capillary. This process regulates the volume of body fluid as well as levels of many body substances. At the end of the tubule, the remaining fluid—urine—exits: it is composed of water, metabolic waste, and toxins.

<span class="mw-page-title-main">Mesonephric duct</span> Paired organ in mammals

The mesonephric duct, also known as the Wolffian duct, archinephric duct, Leydig's duct or nephric duct, is a paired organ that develops in the early stages of embryonic development in humans and other mammals. It is an important structure that plays a critical role in the formation of male reproductive organs. The duct is named after Caspar Friedrich Wolff, a German physiologist and embryologist who first described it in 1759.

<span class="mw-page-title-main">Renal medulla</span> Innermost part of the kidney

The renal medulla is the innermost part of the kidney. The renal medulla is split up into a number of sections, known as the renal pyramids. Blood enters into the kidney via the renal artery, which then splits up to form the segmental arteries which then branch to form interlobar arteries. The interlobar arteries each in turn branch into arcuate arteries, which in turn branch to form interlobular arteries, and these finally reach the glomeruli. At the glomerulus the blood reaches a highly disfavourable pressure gradient and a large exchange surface area, which forces the serum portion of the blood out of the vessel and into the renal tubules. Flow continues through the renal tubules, including the proximal tubule, the loop of Henle, through the distal tubule and finally leaves the kidney by means of the collecting duct, leading to the renal pelvis, the dilated portion of the ureter.

<span class="mw-page-title-main">Genitourinary system</span> Organ system of the reproductive organs and the urinary system

The genitourinary system, or urogenital system, are the organs of the reproductive system and the urinary system. These are grouped together because of their proximity to each other, their common embryological origin and the use of common pathways, like the male urethra. Also, because of their proximity, the systems are sometimes imaged together.

<span class="mw-page-title-main">Glomerulus (kidney)</span> Functional unit of nephron

The glomerulus is a network of small blood vessels (capillaries) known as a tuft, located at the beginning of a nephron in the kidney. Each of the two kidneys contains about one million nephrons. The tuft is structurally supported by the mesangium, composed of intraglomerular mesangial cells. The blood is filtered across the capillary walls of this tuft through the glomerular filtration barrier, which yields its filtrate of water and soluble substances to a cup-like sac known as Bowman's capsule. The filtrate then enters the renal tubule of the nephron.

The development of the urinary system begins during prenatal development, and relates to the development of the urogenital system – both the organs of the urinary system and the sex organs of the reproductive system. The development continues as a part of sexual differentiation.

<span class="mw-page-title-main">Mesonephros</span> Principal excretory organ during early human embryonic life

The mesonephros is one of three excretory organs that develop in vertebrates. It serves as the main excretory organ of aquatic vertebrates and as a temporary kidney in reptiles, birds, and mammals. The mesonephros is included in the Wolffian body after Caspar Friedrich Wolff who described it in 1759.

Kidney development, or nephrogenesis, describes the embryologic origins of the kidney, a major organ in the urinary system. This article covers a 3 part developmental process that is observed in most reptiles, birds and mammals, including humans. Nephrogenesis is often considered in the broader context of the development of the urinary and reproductive organs.

<span class="mw-page-title-main">Intermediate mesoderm</span> Layer of cells in mammalian embryos

Intermediate mesoderm or intermediate mesenchyme is a narrow section of the mesoderm located between the paraxial mesoderm and the lateral plate of the developing embryo. The intermediate mesoderm develops into vital parts of the urogenital system.

The term paradidymis is applied to a small collection of convoluted tubules, situated in front of the lower part of the spermatic cord, above the head of the epididymis.

In earlier conceptions of kidney biology, the nephrotome was a section of the mesoderm that gives rise to the pronephros and eventually to the rest of the kidney. Older texts describe the pronephros as forming through the fusion of multiple nephrotomes.

<span class="mw-page-title-main">Human embryonic development</span> Development and formation of the human embryo

Human embryonic development, or human embryogenesis, is the development and formation of the human embryo. It is characterised by the processes of cell division and cellular differentiation of the embryo that occurs during the early stages of development. In biological terms, the development of the human body entails growth from a one-celled zygote to an adult human being. Fertilization occurs when the sperm cell successfully enters and fuses with an egg cell (ovum). The genetic material of the sperm and egg then combine to form the single cell zygote and the germinal stage of development commences. Embryonic development in the human, covers the first eight weeks of development; at the beginning of the ninth week the embryo is termed a fetus. The eight weeks has 23 stages.

The development of the reproductive system is the part of embryonic growth that results in the sex organs and contributes to sexual differentiation. Due to its large overlap with development of the urinary system, the two systems are typically described together as the urogenital or genitourinary system.

The nephrogenic cord is a portion of the urogenital ridge which is the source of much of the urinary system.

Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes to keep the body fluids from becoming too diluted or concentrated. Osmotic pressure is a measure of the tendency of water to move into one solution from another by osmosis. The higher the osmotic pressure of a solution, the more water tends to move into it. Pressure must be exerted on the hypertonic side of a selectively permeable membrane to prevent diffusion of water by osmosis from the side containing pure water.

<span class="mw-page-title-main">Opisthonephros</span>

The opisthonephros is the functional adult kidney in lampreys (cyclostomes), most fishes, and amphibians. It is formed from the extended mesonephros along with tubules from the posterior nephric ridge. The functional embryonic kidney in anamniotes is the pronephros.

The rock dove, Columbia livia, has a number of special adaptations for regulating water uptake and loss.

The kidneys are a pair of organs of the excretory system in vertebrates, which maintains the balance of water and electrolytes in the body (osmoregulation), filters the blood, removes metabolic waste products, and in many vertebrates also produces hormones and maintains blood pressure. In healthy vertebrates, the kidneys maintain homeostasis of extracellular fluid in the body. When the blood is being filtered, the kidneys form urine, which consists of water and excess or unnecessary substances, the urine is then excreted from the body through other organs, which in vertebrates, depending on the species, may include the ureter, urinary bladder, cloaca, and urethra.

<span class="mw-page-title-main">Mammalian kidney</span> Paired organ in the urinary system of mammals

The mammalian kidneys are a pair of excretory organs of the urinary system of mammals, a type of metanephric kidney. The kidneys in mammals are usually bean-shaped, located behind the peritoneum (retroperitoneally) on the back (dorsal) wall of the body. Each kidney consists of a renal capsule, peripheral cortex, internal medulla, calices, and renal pelvis, although the calices or renal pelvis may be absent in some species. Urine is excreted from the kidney through the ureter. The structure of the kidney may differ between species depending on the environment, in particular on its aridity. The cortex is responsible for filtering the blood, this part of the kidney is similar to the typical kidneys of less developed vertebrates. Nitrogen-containing waste products are excreted by the kidneys in mammals mainly in the form of urea.