Protective index

Last updated

The protective index (PI) is a comparison of the amount of a therapeutic agent that causes the therapeutic effect to the amount that causes toxicity. Quantitatively, it is the ratio given by the toxic dose divided by the therapeutic dose. A protective index is the toxic dose of a drug for 50% of the population (TD50) divided by the minimum effective dose for 50% of the population (ED50). A high protective index is preferable to a low one: this corresponds to a situation in which one would have to take a much higher dose of a drug to reach the toxic threshold than the dose taken to elicit the therapeutic effect. A drug should ordinarily only be administered if the protective index is greater than one, indicating that the benefit outweighs the risk.

The protective index is similar to the therapeutic index, but concerns toxicity (TD50) rather than lethality (LD50); thus, the protective index is a smaller ratio. Toxicity can take many forms, as drugs typically have multiple side effects of varying severity, so a specific criterion of toxicity must be specified for the protective index to be meaningful. Ideally a choice is made such that the harm caused by the toxicity just outweighs the benefit of the drug's effect. Thus, the protective index is a more accurate measure of the benefit-to-risk ratio than the therapeutic index, but is less objectively defined. Nevertheless, the therapeutic index can be viewed as an upper bound to the protective index for a given substance.

Protective index can also defined as the factor by which the dose of a toxicant must be multiplied to produce a defined level of toxicity in the presence of a nontoxic dose of another chemical. [1]

The higher the protective index, better is the antidotal value of a given substance. Sometimes the protective index is higher in the presence of two or more substances than in the presence of either of the substances alone. For example, the LD50 of potassium cyanide alone is 11 mg/kg, whereas it is 21 mg/kg in the presence of sodium nitrite, giving a protective index of 1.91. The LD50 of potassium cyanide in the presence of sodium thiosulfate is 35 mg/kg, giving a protective index of 3.2. The LD50 of potassium cyanide in the presence of both nitrite and thiosulfate is 52 mg/kg with a protective index of 4.73. Since the protective index is higher for the simultaneous use of nitrite and thiosulfate, the two chemicals constitute the antidote against cyanide intoxication. [1]

Related Research Articles

<span class="mw-page-title-main">Amyl nitrite</span> Chemical compound

Amyl nitrite is a chemical compound with the formula C5H11ONO. A variety of isomers are known, but they all feature an amyl group attached to the nitrite functional group. The alkyl group is unreactive and the chemical and biological properties are mainly due to the nitrite group. Like other alkyl nitrites, amyl nitrite is bioactive in mammals, being a vasodilator, which is the basis of its use as a prescription medicine. As an inhalant, it also has a psychoactive effect, which has led to its recreational use, with its smell being described as that of old socks or dirty feet. It was first documented in 1844 and came into medical use in 1867.

<span class="mw-page-title-main">Cyanide</span> Any molecule with a cyano group (–C≡N)

In chemistry, a cyanide is a chemical compound that contains a C≡N functional group. This group, known as the cyano group, consists of a carbon atom triple-bonded to a nitrogen atom.

In toxicology, the median lethal dose, LD50 (abbreviation for "lethal dose, 50%"), LC50 (lethal concentration, 50%) or LCt50 is a toxic unit that measures the lethal dose of a given substance. The value of LD50 for a substance is the dose required to kill half the members of a tested population after a specified test duration. LD50 figures are frequently used as a general indicator of a substance's acute toxicity. A lower LD50 is indicative of higher toxicity.

The therapeutic index is a quantitative measurement of the relative safety of a drug. It is a comparison of the amount of a therapeutic agent that causes the therapeutic effect to the amount that causes toxicity. The related terms therapeutic window or safety window refer to a range of doses optimized between efficacy and toxicity, achieving the greatest therapeutic benefit without resulting in unacceptable side-effects or toxicity.

<span class="mw-page-title-main">Sodium nitrite</span> Chemical compound

Sodium nitrite is an inorganic compound with the chemical formula NaNO2. It is a white to slightly yellowish crystalline powder that is very soluble in water and is hygroscopic. From an industrial perspective, it is the most important nitrite salt. It is a precursor to a variety of organic compounds, such as pharmaceuticals, dyes, and pesticides, but it is probably best known as a food additive used in processed meats and (in some countries) in fish products.

In toxicology, the lethal dose (LD) is an indication of the lethal toxicity of a given substance or type of radiation. Because resistance varies from one individual to another, the "lethal dose" represents a dose at which a given percentage of subjects will die. The lethal concentration is a lethal dose measurement used for gases or particulates. The LD may be based on the standard person concept, a theoretical individual that has perfectly "normal" characteristics, and thus not apply to all sub-populations.

<span class="mw-page-title-main">Potassium cyanide</span> Highly toxic crystalline salt

Potassium cyanide is a compound with the formula KCN. It is a colorless salt, similar in appearance to sugar, that is highly soluble in water. Most KCN is used in gold mining, organic synthesis, and electroplating. Smaller applications include jewellery for chemical gilding and buffing. Potassium cyanide is highly toxic, and a dose of 200 to 300 milligrams will kill nearly any human.

<span class="mw-page-title-main">Methemoglobin</span> Type of hemoglobin

Methemoglobin (British: methaemoglobin, shortened MetHb) (pronounced "met-hemoglobin") is a hemoglobin in the form of metalloprotein, in which the iron in the heme group is in the Fe3+ (ferric) state, not the Fe2+ (ferrous) of normal hemoglobin. Sometimes, it is also referred to as ferrihemoglobin. Methemoglobin cannot bind oxygen, which means it cannot carry oxygen to tissues. It is bluish chocolate-brown in color. In human blood a trace amount of methemoglobin is normally produced spontaneously, but when present in excess the blood becomes abnormally dark bluish brown. The NADH-dependent enzyme methemoglobin reductase (a type of diaphorase) is responsible for converting methemoglobin back to hemoglobin.

Popper is a slang term given broadly to recreational drug of the chemical class called alkyl nitrites that are inhaled. They act on the body as vasodilators. Most widely sold products include the original isoamyl nitrite, isopentyl nitrite, and isopropyl nitrite. Isobutyl nitrite is also widely used but is banned in the European Union. In some countries, poppers are labeled or packaged as room deodorizers, leather polish, nail polish remover, or videotape head cleaner to evade anti-drug laws.

<span class="mw-page-title-main">Potassium nitrite</span> Chemical compound

Potassium nitrite (distinct from potassium nitrate) is the inorganic compound with the chemical formula KNO2. It is an ionic salt of potassium ions K+ and nitrite ions NO2, which forms a white or slightly yellow, hygroscopic crystalline powder that is soluble in water.

In toxicology, the lowest published toxic dose is the lowest dosage per unit of bodyweight of a substance known to have produced signs of toxicity in a particular animal species. When quoting a TDLo, the particular species and method of administration are typically stated.

"The dose makes the poison" is an adage intended to indicate a basic principle of toxicology. It is credited to Paracelsus who expressed the classic toxicology maxim "All things are poison, and nothing is without poison; the dosage alone makes it so a thing is not a poison." This is often condensed to: "The dose makes the poison" or in Latin, "Sola dosis facit venenum". It means that a substance can produce the harmful effect associated with its toxic properties only if it reaches a susceptible biological system within the body in a high enough concentration.

<span class="mw-page-title-main">Cyanide poisoning</span> Broad-spectrum poisoning

Cyanide poisoning is poisoning that results from exposure to any of a number of forms of cyanide. Early symptoms include headache, dizziness, fast heart rate, shortness of breath, and vomiting. This phase may then be followed by seizures, slow heart rate, low blood pressure, loss of consciousness, and cardiac arrest. Onset of symptoms usually occurs within a few minutes. Some survivors have long-term neurological problems.

α-Naphthylthiourea Chemical compound

α-Naphthylthiourea (ANTU) is an organosulfur compound with the formula C10H7NHC(S)NH2. This a white, crystalline powder although commercial samples may be off-white. It is used as a rodenticide and as such is fairly toxic. Naphthylthiourea is available as 10% active baits in suitable protein- or carbohydrate-rich materials and as a 20% tracking powder.

<span class="mw-page-title-main">Median toxic dose</span> Dose at which toxicity occurs in 50% of cases

In toxicology, the median toxic dose (TD50) of a drug or toxin is the dose at which toxicity occurs in 50% of cases. The type of toxicity should be specified for this value to have meaning for practical purposes. The median toxic dose encompasses the category of toxicity that is greater than half maximum effective concentration (ED50) but less than the median lethal dose (LD50). However, for some highly potent toxins (ex. lofentanil, botulinum toxin) the difference between the ED50 and TD50 is so minute that the values assigned to them may be approximated to equal doses. Since toxicity need not be lethal, the TD50 is generally lower than the median lethal dose (LD50), and the latter can be considered an upper bound for the former. However, since the toxicity is above the effective limit, the TD50 is generally greater than the ED50. If the result of a study is a toxic effect that does not result in death, it is classified as this form of toxicity. Toxic effects can be defined differently, sometimes considering the therapeutic effect of a substance to be toxic (such as with chemotherapeutics) which can lead to confusion and contention regarding a substance's TD50. Examples of these toxic endpoints include cancer, blindness, anemia, and birth defects.

<span class="mw-page-title-main">Dimethyl trisulfide</span> Chemical compound

Dimethyl trisulfide (DMTS) is an organic chemical compound and the simplest organic trisulfide, with the chemical formula CH3SSSCH3. It is a flammable liquid with a foul odor, which is detectable at levels as low as 1 part per trillion.

Methacrylonitrile, MeAN in short, is a chemical compound that is an unsaturated aliphatic nitrile, widely used in the preparation of homopolymers, copolymers, elastomers, and plastics and as a chemical intermediate in the preparation of acids, amides, amines, esters, and other nitriles. MeAN is also used as a replacement for acrylonitrile in the manufacture of an acrylonitrile/butadiene/styrene-like polymer. It is a clear and colorless liquid, that has a bitter almond smell.

<span class="mw-page-title-main">Triazofos</span> Chemical compound

Triazofos is a chemical compound used in acaricides, insecticides, and nematicides.

<span class="mw-page-title-main">Methyl fluoroacetate</span> Chemical compound

Methyl fluoroacetate (MFA) is an extremely toxic methyl ester of fluoroacetic acid. It is a colorless, odorless liquid at room temperature. It is used as a laboratory chemical and as a rodenticide. Because of its extreme toxicity, MFA was studied for potential use as a chemical weapon.

Threshold dose is the minimum dose of drug that triggers minimal detectable biological effect in an animal. At extremely low doses, biological responses are absent for some of the drugs. The increase in dose above threshold dose induces an increase in the percentage of biological responses. Several benchmarks have been established to describe the effects of a particular dose of drug in a particular species, such as NOEL(no-observed-effect-level), NOAEL(no-observed-adverse-effect-level) and LOAEL(lowest-observed-adverse-effect-level). They are established by reviewing the available studies and animal studies. The application of threshold dose in risk assessment safeguards the participants in human clinical trials and evaluates the risks of chronic exposure to certain substances. However, the nature of animal studies also limits the applicability of experimental results in the human population and its significance in evaluating potential risk of certain substances. In toxicology, there are some other safety factors including LD50, LC50 and EC50.

References

  1. 1 2 Bhat, A. Shakoor; Ahangar, Azad A. (2007-02-03). "Methods for Detecting Chemical–Chemical Interaction in Toxicology". Toxicology Mechanisms and Methods. 17 (8): 441–450. doi:10.1080/15376510601177654. ISSN   1537-6516.