RRNA small subunit pseudouridine methyltransferase Nep1

Last updated
RRNA small subunit pseudouridine methyltransferase Nep1
Identifiers
EC no. 2.1.1.260
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

RRNA small subunit pseudouridine methyltransferase Nep1 (EC 2.1.1.260, Nep1, nucleolar essential protein 1) is an enzyme with systematic name S-adenosyl-L-methionine:18S rRNA (pseudouridine1191-N1)-methyltransferase. [1] [2] [3] This enzyme catalyses the following chemical reaction

S-adenosyl-L-methionine + pseudouridine 1191 in yeast 18S rRNA S-adenosyl-L-homocysteine + N1-methylpseudouridine1191 in yeast 18S rRNA

This enzyme recognizes specific pseudouridine residues (Psi) in small subunits of ribosomal RNA based on the local RNA structure.

A point mutation in the ribosome biogenesis factor Nep1 impairs its nucleolar localisation and RNA binding and causes the Bowen-Conradi syndrome. [4] . [5]

Related Research Articles

<span class="mw-page-title-main">Ribosomal RNA</span> RNA component of the ribosome, essential for protein synthesis in all living organisms

Ribosomal ribonucleic acid (rRNA) is a type of non-coding RNA which is the primary component of ribosomes, essential to all cells. rRNA is a ribozyme which carries out protein synthesis in ribosomes. Ribosomal RNA is transcribed from ribosomal DNA (rDNA) and then bound to ribosomal proteins to form small and large ribosome subunits. rRNA is the physical and mechanical factor of the ribosome that forces transfer RNA (tRNA) and messenger RNA (mRNA) to process and translate the latter into proteins. Ribosomal RNA is the predominant form of RNA found in most cells; it makes up about 80% of cellular RNA despite never being translated into proteins itself. Ribosomes are composed of approximately 60% rRNA and 40% ribosomal proteins by mass.

<span class="mw-page-title-main">DNMT3B</span> Protein-coding gene in the species Homo sapiens

DNA (cytosine-5)-methyltransferase 3 beta, is an enzyme that in humans in encoded by the DNMT3B gene. Mutation in this gene are associated with immunodeficiency, centromere instability and facial anomalies syndrome.

<span class="mw-page-title-main">Small nucleolar RNA SNORA11</span>

In molecular biology, small nucleolar RNA SNORA11 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA).

<span class="mw-page-title-main">Small nucleolar RNA SNORA77</span>

In molecular biology, Small nucleolar RNA SNORA77 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA).

In enzymology, a tRNA (guanine-N1-)-methyltransferase (EC 2.1.1.31) is an enzyme that catalyzes the chemical reaction

In enzymology, a tRNA (guanine-N2-)-methyltransferase (EC 2.1.1.32) is an enzyme that catalyzes the chemical reaction

2-<i>O</i>-methylation

2'-O-methylation is a common nucleoside modification of RNA, where a methyl group is added to the 2' hydroxyl of the ribose moiety of a nucleoside, producing a methoxy group. 2'-O-methylated nucleosides are mostly found in ribosomal RNA and small nuclear RNA and occur in the functionally essential regions of the ribosome and spliceosome. Currently, about 1210 2'-O-methylations (2'-O-Me) have been identified in mammals and yeast and deposited in RMBase database.

23S rRNA (adenine2085-N6)-dimethyltransferase (EC 2.1.1.184, ErmC' methyltransferase, ermC methylase, ermC 23S rRNA methyltransferase, rRNA:m6A methyltransferase ErmC', ErmC', rRNA methyltransferase ErmC' ) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine2085-N6)-dimethyltransferase. This enzyme catalyses the following chemical reaction

Multisite-specific tRNA:(cytosine-C5)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (cytosine-C5)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (guanine26-N2)-dimethyltransferase (EC 2.1.1.216, Trm1p, TRM1, tRNA (m22G26)dimethyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine26-N2)-dimethyltransferase. This enzyme catalyses the following chemical reaction

TRNA (adenine22-N1)-methyltransferase (EC 2.1.1.217, TrmK, YqfN, Sp1610 (gene), tRNA: m1A22 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (adenine22-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (adenine9-N1)-methyltransferase (EC 2.1.1.218, Trm10p, tRNA(m1G9/m1A9)-methyltransferase, tRNA(m1G9/m1A9)MTase, TK0422p (gene), tRNA m1A9-methyltransferase, tRNA m1A9 Mtase) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (adenine9-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (adenine57-N1/adenine58-N1)-methyltransferase (EC 2.1.1.219, TrmI, PabTrmI, AqTrmI, MtTrmI) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (adenine57/adenine58-N1)-methyltransferase. This enzyme catalyses the following chemical reaction:

TRNA (adenine58-N1)-methyltransferase (EC 2.1.1.220, tRNA m1A58 methyltransferase, tRNA (m1A58) methyltransferase, TrmI, tRNA (m1A58) Mtase, Rv2118cp, Gcd10p-Gcd14p, Trm61p-Trm6p) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (adenine58-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (guanine9-N1)-methyltransferase (EC 2.1.1.221, Trm10p, tRNA(m1G9/m1A9)-methyltransferase, tRNA(m1G9/m1A9)MTase, tRNA (guanine-N(1)-)-methyltransferase, tRNA m1G9-methyltransferase, tRNA m1G9 MTase) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine9-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (pseudouridine54-N1)-methyltransferase (EC 2.1.1.257, TrmY, m1Psi methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (pseudouridine54-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

Bowen–Conradi syndrome is a disease in humans that can affect children. The disease is due to an autosomal recessive abnormality of the EMG1 gene, which plays a role in small ribosomal subunit (SSU) assembly. The preponderance of diagnoses has been in North American Hutterite children, but BWCNS can affect other population groups.

The Cluster of Excellence Frankfurt "Macromolecular Complexes" (CEF) was established in 2006 by Goethe University Frankfurt together with the Max Planck Institute of Biophysics and the Max Planck Institute for Brain Research in the context of the German Universities Excellence Initiative. Funding by the Deutsche Forschungsgemeinschaft (DFG) endet in October 2019. CEF grew out of the long-standing collaborative research on membrane proteins and RNA molecules and strengthened research efforts in these fields by recruiting further scientists to Frankfurt/Main. CEF brought together the research activities of up to 45 research groups, the majority of which were based on Riedberg Campus in Frankfurt/Main. CEF founded the Buchmann Institute for Molecular Life Sciences (BMLS).

A nucleoside-modified messenger RNA (modRNA) is a synthetic messenger RNA (mRNA) in which some nucleosides are replaced by other naturally modified nucleosides or by synthetic nucleoside analogues. modRNA is used to induce the production of a desired protein in certain cells. An important application is the development of mRNA vaccines, of which the first authorized were COVID-19 vaccines.

<span class="mw-page-title-main">N1-Methylpseudouridine</span> Chemical compound

N1-Methylpseudouridine is a natural archaeal tRNA component as well as a synthetic pyrimidine nucleoside used in biochemistry and molecular biology for in vitro transcription and is found in the SARS-CoV-2 mRNA vaccines tozinameran (Pfizer–BioNTech) and elasomeran (Moderna).

References

  1. Taylor AB, Meyer B, Leal BZ, Kötter P, Schirf V, Demeler B, Hart PJ, Entian KD, Wöhnert J (March 2008). "The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site". Nucleic Acids Research. 36 (5): 1542–54. doi:10.1093/nar/gkm1172. PMC   2275143 . PMID   18208838.
  2. Wurm JP, Meyer B, Bahr U, Held M, Frolow O, Kötter P, Engels JW, Heckel A, Karas M, Entian KD, Wöhnert J (April 2010). "The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase". Nucleic Acids Research. 38 (7): 2387–98. doi:10.1093/nar/gkp1189. PMC   2853112 . PMID   20047967.
  3. Meyer B, Wurm JP, Kötter P, Leisegang MS, Schilling V, Buchhaupt M, Held M, Bahr U, Karas M, Heckel A, Bohnsack MT, Wöhnert J, Entian KD (March 2011). "The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA". Nucleic Acids Research. 39 (4): 1526–37. doi:10.1093/nar/gkq931. PMC   3045603 . PMID   20972225.
  4. Meyer B, Wurm JP, Kotter P, Leisegang MS, Schilling V, Buchhaupt M, Held M, Bahr U, Karas M, Heckel A, Bohnsack MT, Wöhnert J, Entian KD (2011). "The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Psi 1191 in yeast 18S rRNA". Nucleic Acids Res. 39 (4): 1526–37. doi:10.1093/nar/gkq931. PMC   3045603 . PMID   20972225.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Wurm JP, Meyer B, Bahr U, Held M, Frolow O, Kotter P, Engels JW, Heckel A, Karas M, Entian KD, Wöhnert J (2010). "The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase". Nucleic Acids Res. 38 (7): 2387–98. doi:10.1093/nar/gkp1189. PMC   2853112 . PMID   20047967.{{cite journal}}: CS1 maint: multiple names: authors list (link)