Raspberry spur blight

Last updated

Raspberry spur blight
Didymella applanata (4).jpg
Didymella applanata on Rubus idaeus
Scientific classification Red Pencil Icon.png
Kingdom: Fungi
Division: Ascomycota
Class: Dothideomycetes
Order: Pleosporales
Family: Didymellaceae
Genus: Didymella
Species:
D. applanata
Binomial name
Didymella applanata
(Niessl) Sacc., (1882)
Synonyms [1]
  • Ascochyta argillacea
  • Didymosphaeria applanata
  • Endophlaea applanata
  • Mycosphaerella rubina
  • Phoma argillacea
  • Phyllosticta argillacea
  • Sphaerella rubina
  • Sphaeria applanata
  • Xenodidymella applanata(Niessl) Q. Chen & L. Cai, (2015)
Raspberry spur blight
Didymella applanata (5).jpg
Didymella applanata on Rubus idaeus
Causal agentsDidymella applanata
Hosts Raspberry
EPPO Code DIDYAP

Raspberry spur blight is caused by the fungus Didymella applanata. [2] This plant pathogen is more problematic on red raspberries (Rubus idaeus) than on black or purple raspberries. The fungus infects the leaves first and then spreads to the cane. It causes necrotic spots on the cane near the base of the petiole attachment. [3] Raspberry spur blight can cause a significant reduction in yield, fruit blight, premature leaf drop, and weak bud and cane growth. The magnitude of damage is not clearly understood in the United States, however, studies from Scotland suggest damage to the cane itself is limited. [4] The disease has minor economic impacts by reducing leaves in the summer or killing buds. Major economic damage occurs if the disease manages to kill the entire cane. [3] In the United States, this disease is found in Oregon and Washington. [5]

Contents

Signs

In the late summer, the bark of infected areas split and the lesions produce fruiting bodies called pycnidia. Pycnidia appear as small black dots to the naked eye and can be seen as flask-shaped structures under a microscope. Perithecia, another fruiting body, forms after the pycnidia. Perithecia appear as medium, black, erupting dots. [4] In the spring, spur blight can be mistaken for winter injury therefore it is important to scout for these signs in September to assess the potential damage that will be done in the following season. [3]

Symptoms

Infection generally occurs in the late spring when the environment is wet and optimal for fungus to proliferate. Symptoms do not become visible until mid to late summer. Visible symptoms include purple and brown expansive lesions appearing below buds, leaves and the lower portion of the stem. leaflets that are infected have wedge-shaped brown patches. Infected leaflets may fall, leaving only the petiole and canes behind. During the next season, branch growth from diseased canes will often be weak and wilted. [6]

Disease cycle

The raspberry spur blight fungus spreads through the pycniospores that are released from the pycnidia. The spores are released and infect other raspberry plants with the help of rain through open wounds or natural openings. [7] The fungus will then spread throughout the plant and will live in lesions during the winter to survive. After winter there are two spore types that are formed pycniospores and ascospores. The pycniospores come from conidia and the ascospores come from the perithecia that was formed. Both of these spores will spread through rainfall onto new plants and start the process over again. [8]

Environment

The environments that are favorable for raspberry spur blight are conditions that usually favor spore production. Infection generally occurs in late spring when the environment is wet and moist. Thick and dense patches of raspberries also increase infection.

Disease control

Methods of controlling this disease include improving air circulation to allow fast drying of the plant, removing weeds that slow air flow, reducing the number of wet periods the plant is exposed to, avoiding the use of fertilizers because it promotes growth of susceptible tissue targeted by the pathogen, thinning plants for better light exposure and removing possible sources of inoculum. Removing sources of inoculum can be completed by destroying wild brambles that may carry the disease, removing and destroying all previously infected material and using special fungicide in certain situations. [4]

Other methods include starting with disease free plants, buying cultivars that are less susceptible to raspberry spur blight such as Brandywine, Killarney, Latham and Newburgh, and avoiding cultivars that have greater susceptibility such as Royalty, Titan, Canby, Skeena, Willamette, Reveille, and Sentry. Willamette readily infects with spur blight but is tolerant to the disease and still produces satisfactory yields. [6]

It is important to minimize plant wounding and maintain proper soil nutrition. If you plan on pruning, always allow four to five days for healing before exposing the plants to water. Chemicals can be used in some cases. However, the spraying of chemicals is only efficient if it is sprayed on the entire raspberry plant. [9] These include lime sulfur or copper application, captan/fenhexamid mixture (Captevate 68WDG) applied when 8-10" shoot growth, and Strobilurins. [6] Recent research indicates that chitinases may effectively control against raspberry spur blight. Specifically, chitinases, when applied, were found to reduce lesion size, and control infection of internal tissues. [10] Notably, the application of Phytoverm, a Streptomyces avermitilis metabolite, had a similar inhibitory effect on disease growth. [11] Other plant pathogens have also been found to reduce the growth rate of casual agent D. applanata such as entornopathogenic fungi (Hyphomycetes). [12]

Importance

The United States is the third largest country in producing raspberries. Raspberries are grown all over the country, but the majority are produced in Washington, California and Oregon. [13] However, in the United States the magnitude of damage caused by raspberry spur blight is not clearly understood. [4]

Related Research Articles

Black rot (grape disease) Species of fungus

Grape black rot is a fungal disease caused by an ascomycetous fungus, Guignardia bidwellii, that attacks grape vines during hot and humid weather. “Grape black rot originated in eastern North America, but now occurs in portions of Europe, South America, and Asia. It can cause complete crop loss in warm, humid climates, but is virtually unknown in regions with arid summers.” The name comes from the black fringe that borders growing brown patches on the leaves. The disease also attacks other parts of the plant, “all green parts of the vine: the shoots, leaf and fruit stems, tendrils, and fruit. The most damaging effect is to the fruit”.

<i>Diplocarpon rosae</i> Species of fungus

Diplocarpon rosae is a fungus that creates the rose black spot disease. Because it was observed by people of various countries around the same time, the nomenclature for the fungus varied with about 25 different names. The asexual stage is now known to be Marssonina rosae, while the sexual and most common stage is known as Diplocarpon rosae.

<i>Venturia inaequalis</i> Species of fungus

Venturia inaequalis is an ascomycete fungus that causes the apple scab disease.

Leptosphaeria coniothyrium is a plant pathogen. It can be found across the world.

<i>Mycosphaerella brassicicola</i> Species of fungus

Mycosphaerella brassicicola is a plant pathogen. The pathogen is the teleomorph phase of an ascomycete fungus, which causes the ring spot disease of brassicas. The supplementary anamorph phase Asteromella brassicae produces conidia through its asexual reproduction, however these spores are not confirmed to cause disease in host plants.

<i>Gibberella zeae</i> Species of fungus

Gibberella zeae, also known by the name of its anamorph Fusarium graminearum, is a fungal plant pathogen which causes fusarium head blight, a devastating disease on wheat and barley. The pathogen is responsible for billions of dollars in economic losses worldwide each year. Infection causes shifts in the amino acid composition of wheat, resulting in shriveled kernels and contaminating the remaining grain with mycotoxins, mainly deoxynivalenol, which inhibits protein biosynthesis; and zearalenone, an estrogenic mycotoxin. These toxins cause vomiting, liver damage, and reproductive defects in livestock, and are harmful to humans through contaminated food. Despite great efforts to find resistance genes against F. graminearum, no completely resistant variety is currently available. Research on the biology of F. graminearum is directed towards gaining insight into more details about the infection process and reveal weak spots in the life cycle of this pathogen to develop fungicides that can protect wheat from scab infection.

<i>Lasiodiplodia theobromae</i> Species of fungus

Lasiodiplodia theobromae is a plant pathogen with a very wide host range. It causes rotting and dieback in most species it infects. It is a common post harvest fungus disease of citrus known as stem-end rot. It is a cause of bot canker of grapevine. It also infects Biancaea sappan, a species of flowering tree also known as Sappanwood.

<i>Diaporthe helianthi</i> Species of fungus

Diaporthe helianthi is a fungal pathogen that causes Phomopsis stem canker of sunflowers. In sunflowers, Phomopsis helianthi is the causative agent behind stem canker. Its primary symptom is the production of large canker lesions on the stems of sunflower plants. These lesions can eventually lead to lodging and plant death. This disease has been shown to be particularly devastating in southern and eastern regions of Europe, although it can also be found in the United States and Australia. While cultural control practices are the primary method of controlling for Stem Canker, there have been a few resistant cultivars developed in regions of Europe where the disease is most severe.

<i>Ascochyta</i> Genus of fungi

Ascochyta is a genus of ascomycete fungi, containing several species that are pathogenic to plants, particularly cereal crops. The taxonomy of this genus is still incomplete. The genus was first described in 1830 by Marie-Anne Libert, who regarded the spores as minute asci and the cell contents as spherical spores. Numerous revisions to the members of the genus and its description were made for the next several years. Species that are plant pathogenic on cereals include, A. hordei, A. graminea, A. sorghi, A. tritici. Symptoms are usually elliptical spots that are initially chlorotic and later become a necrotic brown. Management includes fungicide applications and sanitation of diseased plant tissue debris.

<i>Alternaria solani</i> Species of fungus

Alternaria solani is a fungal pathogen that produces a disease in tomato and potato plants called early blight. The pathogen produces distinctive "bullseye" patterned leaf spots and can also cause stem lesions and fruit rot on tomato and tuber blight on potato. Despite the name "early," foliar symptoms usually occur on older leaves. If uncontrolled, early blight can cause significant yield reductions. Primary methods of controlling this disease include preventing long periods of wetness on leaf surfaces and applying fungicides. Early blight can also be caused by Alternaria tomatophila, which is more virulent on stems and leaves of tomato plants than Alternaria solani.

<i>Ascochyta pisi</i> Species of fungus

Ascochyta pisi is a fungal plant pathogen that causes ascochyta blight on pea, causing lesions of stems, leaves, and pods. These same symptoms can also be caused by Ascochyta pinodes, and the two fungi are not easily distinguishable.

<i>Didymella bryoniae</i> Species of fungus

Didymella bryoniae, syn. Mycosphaerella melonis, is an ascomycete fungal plant pathogen that causes Gummy stem blight on the family Cucurbitaceae [1-3]. The anamorph/asexual stage for this fungus is called Phoma cucurbitacearum[2]. This pathogen commonly affects the foliage and stems of plants from the family Cucurbitaceae, which includes cantaloupe, cucumber, muskmelon and watermelon plants [1,3,8]. When this pathogen infects the fruit of cucurbits it is called black rot [2].

<i>Colletotrichum coccodes</i> Species of fungus

Colletotrichum coccodes is a plant pathogen, which causes anthracnose on tomato and black dot disease of potato. Fungi survive on crop debris and disease emergence is favored by warm temperatures and wet weather.

<i>Diaporthe phaseolorum <span style="font-style:normal;">var.</span> sojae</i> Fungal plant pathogen

Diaporthe phaseolorum var. sojae is a plant pathogen infecting soybean and peanut.

<i>Septoria malagutii</i> Species of fungus

Septoria malagutii is a fungal plant pathogen infecting potatoes. The casual fungal pathogen is a deuteromycete and therefore has no true sexual stage. As a result, Septoria produces pycnidia, an asexual flask shaped fruiting body, on the leaves of potato and other tuber-bearing spp. causing small black to brown necrotic lesions ranging in size from 1-5mm. The necrotic lesions can fuse together forming large necrotic areas susceptible to leaf drop, early senescence, dieback, and dwarfing. Septoria malagutii has been found only in the Andean countries of Bolivia, Ecuador, Peru, and Venezuela at altitudes of near 3000 meters. Consequently, the fungi grows and disperses best under relatively low temperatures with high humidities, with optimal growth occurring at 20 °C (68 °F). The disease has caused devastation on potato yields in South America and in areas where this disease is common, potato yields have been seen to drop by 60%.

Citrus black spot Fungal disease that affects citrus fruit

Citrus black spot is a fungal disease caused by Guignardia citricarpa. This Ascomycete fungus affects citrus plants throughout subtropical climates, causing a reduction in both fruit quantity and quality. Symptoms include both fruit and leaf lesions, the latter being critical to inter-tree dispersal. Strict regulation and management is necessary to control this disease since there are currently no citrus varieties that are resistant.

Phomopsis blight of juniper Species of fungus

Phomopsisblight of juniper is a foliar disease discovered in 1917 caused by the fungal pathogen Phomopsis juniperovora. The fungus infects new growth of juniper trees or shrubs, i.e. the seedlings or young shoots of mature trees. Infection begins with the germination of asexual conidia, borne from pycnidia, on susceptible tissue, the mycelia gradually move inwards down the branch, and into the main stem. Management strategies mainly include removing and destroying diseased tissue and limiting the presence of moisture on plants. Junipers become resistant to infection as they mature and the young yellow shoots turn dark green. Preventive strategies include planting only resistant varieties and spraying new growth with fungicide until plants have matured.

Raspberry leaf spot is a plant disease caused by Sphaerulina rubi, an ascomycete fungus. Early symptoms of infection are dark green spots on young leaves. As the disease progresses, these spots turn tan or gray in color. Disease management strategies for raspberry leaf spot include the use of genetically resistant raspberry plant varieties, chemical fungicide sprays, and cultural practices such as pruning and thinning out canes.

Gummy Stem Blight is a cucurbit-rot disease caused by the fungal plant pathogen Didymella bryoniae . Gummy Stem Blight can affect a host at any stage of growth in its development and affects all parts of the host including leaves, stems and fruits. Symptoms generally consist of circular dark tan lesions that blight the leaf, water soaked leaves, stem cankers, and gummy brown ooze that exudes from cankers, giving it the name Gummy Stem Blight. Gummy Stem Blight reduces yields of edible cucurbits by devastating the vines and leaves and rotting the fruits. There are various methods to control Gummy Stem Blight, including use of treated seed, crop rotation, using preventative fungicides, eradication of diseased material, and deep plowing previous debris.

Banana freckle

Banana freckle is a disease caused by the fungus Guignardia musae (telomorph) or Phyllosticta musarum (anamorph). Generally, the causal agent of disease is referred to as Guignardia-Phyllosticta sp. There are several different strains of the fungus that exist to infect different banana varieties around the globe. Symptoms include yellowing of the tissue and formation of small dark brown spots on the leaves and fruit. Within the spots, conidia or pycnidia can be found. Banana freckle is easily propagated and spread from plant to plant by rain splash and movement of infected tissue or fruit. Management of the disease consists of cutting out infected leaves, the paper bag method, fungicide application, and proper sanitation techniques. This devastating disease is extremely relevant for the major banana exporting countries of the world. In the absence of chemical control, there is about a 78% yield loss. Banana freckle disease needs to be carefully monitored in order to prevent further spread of the disease.

References

  1. Chen; et al. (2015). "Resolving the Phoma enigma". Studies in Mycology. 82: 137–217. doi:10.1016/j.simyco.2015.10.003. PMC   4774273 . PMID   26955202.
  2. Ellis, Michael A. http://ohioline.osu.edu/hyg-fact/3000/pdf/HYG_3008_08.pdf "Spur Blight of Red Raspberries", 2008.
  3. 1 2 3 McCamant, Thaddeus. "Apple, Raspberry, & Strawberry Pests". Minnesota Department of Agriculture. Retrieved 3 December 2012.
  4. 1 2 3 4 Ellis, Michael A. "Spur Blight of Red Raspberries", 2008.
  5. "Raspberry (Rubus sp.)-Spur Blight". APS Press. Retrieved 3 December 2012.
  6. 1 2 3 Heidenreich, Cathy. http://www.fruit.cornell.edu/berry/ipm/ipmpdfs/Raspberry%20cane%20disease%20mgmt.pdf "Managing Raspberry Cane Diseases", March 13, 2006.
  7. "IPM : Fruits : Spur Blight and Cane Blight of Raspberries." Integrated Pest Management at the University of Illinois. N.p., n.d. Web. 23 Oct. 2012. "Archived copy". Archived from the original on 2013-02-15. Retrieved 2012-10-24.CS1 maint: archived copy as title (link).
  8. Ellis, Mike A., and Mizuho Nita. "Organic Fruit Management Workshop." Ohio Agricultural Research and Development Center - Home. N.p., n.d. Web. 23 Oct. 2012. http://www.oardc.ohio-state.edu/fruitpathology/organic/brambles/All-Brambles.html.
  9. Rekanović, E., Stepanović, M., Potočnik, I., Milijašević-Marčić, S., Todorović, B., Duduk, B. and Gavrilović, V. 2012. FIELD EFFICACY OF FUNGICIDES AND BIOFUNGICIDES IN THE CONTROL OF SPUR BLIGHT OF RASPBERRIES IN SERBIA. Acta Hort. (ISHS) 946:289-292 http://www.actahort.org/books/946/946_47.htm
  10. Shternshis, Margarita et al. (2006). "The effect of chitinase on Didymella applanata, the causal agent of raspberry cane spur blight," Biocontrol, Volume 51, Number 3 (2006), 311-322, DOI: 10.1007/s10526-005-1034-2
  11. Shternshis, Margarita et al. (2002). "Field testing of BACTICIDE (R), PHYTOVERM (R) and CHITINASE for control of the raspberry midge blight in Siberia," Biocontrol, Volume 47, Issue 6, 697-706, DOI: 10.1023/A:1020574914831
  12. Shternshis, Margarita et al. (2005). "The influence of enthomopathogenic fungi and formulation phytoverm on the raspberry cane midge (Resseliella theobaldi) and spur blight causal agent (Didymella applanata)," MIKOLOGIYA I FITOPATOLOGIYA, Volume 39, Issue 1, 76-82, WOS:000228409300012
  13. "Raspberries - Agricultural Marketing Resource Center". www.agmrc.org. Retrieved 16 February 2018.