Raton Formation

Last updated

Raton Formation
Stratigraphic range: upper Cretaceous–Paleocene
Cretaceous-Paleogene boundary in Colorado 4.JPG
Type Formation
Underlies Poison Canyon Formation
Overlies Vermejo Formation
Thickness1,140 feet (350 m)
Lithology
Primary Sandstone, conglomerate
Other Coal, shale
Location
Coordinates 36°58′N104°28′W / 36.96°N 104.47°W / 36.96; -104.47
Region New Mexico
Country United States
Type section
Named for Raton Mesa
Named byF.V. Hayden
Year defined1869
Usa edcp relief location map.png
Orange pog.svg
Raton Formation (the United States)
USA New Mexico relief location map.svg
Orange pog.svg
Raton Formation (New Mexico)

The Raton Formation is a geological formation of Upper Cretaceous and Paleocene age which outcrops in the Raton Basin of northeast New Mexico and southeast Colorado. [1]

Contents

Description

The formation consists of coal with carbonaceous shale, brown to buff sandstone, and conglomerate (usually at the base). It is about 1,140 feet (350 m) thick at the type locality. The formation unconformably overlies the Vermejo Formation, and unconformably (?) underlies the Poison Canyon Formation. [1] It is of late Cretaceous to Paleocene age. [2]

The formation can be divided into three informal members. [3] The lowest member is a basal sandstone and conglomerate of quartzite, chert and gneiss pebbles and cobbles in a coarse-grained quartzose to arkosic sandstone matrix. The middle member is fine to coarse grained sandstone, with some siltstone, mudstone, and coal. The upper member is coal-bearing and contains sandstone, siltstone, mudstone, shale, and mineable coal. [4]

Numerous igneous intrusions, ranging in age from 6.7 to 29.5 million years old, are found in the formation. These range from dikes and that have locally altered the coal to sills that preferentially penetrated along coal beds and destroyed the coal. It is likely that hundreds of millions of tons of the original coal deposits were destroyed this way. [5]

Cretaceous-Paleogene boundary

Because the Raton Formation is a well-preserved sequence of rocks spanning the Cretaceous-Paleogene boundary, it has been studied for evidence of a large meteor impact at the end of the Cretaceous that is thought to have caused the Cretaceous–Paleogene extinction event. The boundary is represented by a 1-cm thick tonstein clay layer which has been found to contain anomalously high concentrations of iridium. [6] The boundary clay layer is accessible to the public at Trinidad Lake State Park, among other places in the Raton Basin.

Fossils

The formation contains fossils of the green algae Pediastrum and Scenedesmus characteristic of a freshwater lake or pond environment. [7] Plant fossils suggest the formation was deposited in a tropical rain forest environment, with the presence of Icacinicaryites corruga [8] and the understory fern Cyclosorus indicating a very warm environment. [9]

Economic resources

The Raton Formation contains economically important deposits of coal. These were first discovered in 1841 and mining began in 1873. Mining declined precipitously in the mid-20th century with the decline of the steel industry using the coal, but the formation is now being developed for coalbed methane. Reserves in 1999 were estimated at 18.4 trillion cubic feet (520 billion cubic meters). Production at that time was 17.5 million cubic feet per day (500,000 cubic meters per day) from 85 wells. [10]

History of investigation

The Raton Formation was originally named "Raton Hills Group" by Ferdinand Vandeveer Hayden in 1869 for coal beds in the Raton Hills in Colfax County, New Mexico. In 1913, W.T. Lee changed the name to Raton Formation. [1]

Related Research Articles

Denver Basin

The Denver Basin, variously referred to as the Julesburg Basin, Denver-Julesburg Basin, or the D-J Basin, is a geologic structural basin centered in eastern Colorado in the United States, but extending into southeast Wyoming, western Nebraska, and western Kansas. It underlies the Denver-Aurora Metropolitan Area on the eastern side of the Rocky Mountains.

Fruitland Formation

The Fruitland Formation is a geologic formation found in the San Juan Basin in the states of New Mexico and Colorado, in the United States of America. It contains fossils dating it to the Campanian age of the late Cretaceous.

San Juan Basin

The San Juan Basin is a geologic structural basin located near the Four Corners region of the Southwestern United States. The basin covers 7,500 square miles and resides in northwestern New Mexico, southwestern Colorado, and parts of Utah and Arizona. Specifically, the basin occupies space in the San Juan, Rio Arriba, Sandoval, and McKinley counties in New Mexico, and La Plata and Archuleta counties in Colorado. The basin extends roughly 100 miles (160 km) N-S and 90 miles (140 km) E-W.

Scollard Formation Upper Cretaceous to lower Palaeocene stratigraphic unit of the Western Canada Sedimentary Basin

The Scollard Formation is an Upper Cretaceous to lower Palaeocene stratigraphic unit of the Western Canada Sedimentary Basin in southwestern Alberta. Its deposition spanned the time interval from latest Cretaceous to early Paleocene, and it includes sediments that were deposited before, during, and after the Cretaceous-Paleogene (K-Pg) extinction event. It is significant for its fossil record, and it includes the economically important coal deposits of the Ardley coal zone.

Laramie Formation

The Laramie Formation is a geologic formation of Late Cretaceous (Maastrichtian) age, named by Clarence King in 1876 for exposures in northeastern Colorado, in the United States. It was deposited on a coastal plain and in coastal swamps that flanked the Western Interior Seaway. It contains coal, clay and uranium deposits, as well as plant and animal fossils, including dinosaur remains.

Dakota Formation Rock units in Midwestern North America.

The Dakota is a sedimentary geologic unit name of formation and group rank in Midwestern North America. The Dakota units are generally composed of sandstones, mudstones, clays, and shales deposited in the Mid-Cretaceous opening of the Western Interior Seaway. The usage of the name Dakota for this particular Albian-Cenomanian strata is exceptionally widespread; from British Columbia and Alberta to Montana and Wisconsin to Colorado and Kansas to Utah and Arizona. It is famous for producing massive colorful rock formations in the Rocky Mountains and the Great Plains of the United States, and for preserving both dinosaur footprints and early deciduous tree leaves.

Raton Basin Geologic structural basin in Colorado and New Mexico

The Raton Basin is a geologic structural basin in southern Colorado and northern New Mexico. It takes its name from Raton Pass and the town of Raton, New Mexico. In extent, the basin is approximately 50 miles (80 km) east-west, and 90 miles (140 km) north-south, in Huerfano and Las Animas Counties, Colorado, and Colfax County, New Mexico.

Fort Union Formation

The Fort Union Formation is a geologic unit containing sandstones, shales, and coal beds in Wyoming, Montana, and parts of adjacent states. In the Powder River Basin, it contains important economic deposits of coal, uranium, and coalbed methane.

Bisti/De-Na-Zin Wilderness Wilderness in New Mexico, United States

The Bisti/De-Na-Zin Wilderness is a 45,000-acre (18,000 ha) wilderness area located in San Juan County in the U.S. state of New Mexico. Established in 1984, the Wilderness is a desolate area of steeply eroded badlands managed by the Bureau of Land Management, with the exception of three parcels of private Navajo land within its boundaries. The John D. Dingell, Jr. Conservation, Management, and Recreation Act, signed March 12, 2019, expanded the Bisti/De-Na-Zin Wilderness by approximately 2,250 acres.

The Vermejo Formation is a geologic formation of Upper Cretaceous age. It outcrops in the Raton Basin of northeastern New Mexico and southern Colorado.

Paskapoo Formation

The Paskapoo Formation is a stratigraphic unit of Middle to Late Paleocene age in the Western Canada Sedimentary Basin. The Paskapoo underlies much of southwestern Alberta, and takes the name from the Blindman River. It was first described from outcrops along that river, near its confluence with the Red Deer River north of the city of Red Deer, by J.B. Tyrrell in 1887. It is important for its freshwater aquifers, its coal resources, and its fossil record, as well as having been the source of sandstone for the construction of fire-resistant buildings in Calgary during the early 1900s.

Edmonton Group

Within the earth science of geology, the Edmonton Group is a Late Cretaceous to early Paleocene stratigraphic unit of the Western Canada Sedimentary Basin in the central Alberta plains. It was first described as the Edmonton Formation by Joseph Burr Tyrrell in 1887 based on outcrops along the North Saskatchewan River in and near the city of Edmonton. E.J.W. Irish later elevated the formation to group status and it was subdivided into four separate formations. In ascending order, they are the Horseshoe Canyon, Whitemud, Battle and Scollard Formations. The Cretaceous-Paleogene boundary occurs within the Scollard Formation, based on dinosaurian and microfloral evidence, as well as the presence of the terminal Cretaceous iridium anomaly.

The Ravenscrag Formation is a stratigraphic unit of early Paleocene age in the Western Canada Sedimentary Basin. It was named for the settlement of Ravenscrag, Saskatchewan, and was first described from outcrops at Ravenscrag Butte near the Frenchman River by N.B. Davis in 1918.

Geology of East Sussex Overview of the geology of East Sussex

The geology of East Sussex is defined by the Weald–Artois anticline, a 60 kilometres (37 mi) wide and 100 kilometres (62 mi) long fold within which caused the arching up of the chalk into a broad dome within the middle Miocene, which has subsequently been eroded to reveal a lower Cretaceous to Upper Jurassic stratigraphy. East Sussex is best known geologically for the identification of the first dinosaur by Gideon Mantell, near Cuckfield, to the famous hoax of the Piltdown man near Uckfield.

Geology of the Isle of Wight

The geology of the Isle of Wight is dominated by sedimentary rocks of Cretaceous and Paleogene age. This sequence was affected by the late stages of the Alpine Orogeny, forming the Isle of Wight monocline, the cause of the steeply-dipping outcrops of the Chalk Group and overlying Paleogene strata seen at The Needles, Alum Bay and Whitecliff Bay.

The Poison Canyon Formation is a geologic formation in the Raton Basin of Colorado and New Mexico. The formation was deposited from the late Cretaceous through the Paleocene.

The Whitemud Formation is a geologic formation of Late Cretaceous (Maastrichtian) age in the Western Canada Sedimentary Basin. it is present through the plains of southern Saskatchewan, southeastern Alberta and south-central Alberta. Named by N.B. Davis in 1918, the formation is characterized by white kaolinitic clay and is a source of high-quality refractory clay. The type locality has been designated as Dempster's clay pit northwest of Eastend, Saskatchewan.

Cook Inlet Basin

The Cook Inlet Basin is a northeast-trending collisional forearc basin that stretches from the Gulf of Alaska into South central Alaska, just east of the Matanuska Valley. It is located in the arc-trench gap between the Alaska-Aleutian Range batholith and contains roughly 80,000 cubic miles of sedimentary rocks. These sediments are mainly derived from Triassic, Jurassic and Cretaceous sediments.

Geology of Bosnia and Herzegovina

The geology of Bosnia & Herzegovina is the study of rocks, minerals, water, landforms and geologic history in the country. The oldest rocks exposed at or near the surface date to the Paleozoic and the Precambrian geologic history of the region remains poorly understood. Complex assemblages of flysch, ophiolite, mélange and igneous plutons together with thick sedimentary units are a defining characteristic of the Dinaric Alps, also known as the Dinaride Mountains, which dominate much of the country's landscape.

Trinidad Sandstone Geologic formation in New Mexico and Colorado

The Trinidad Sandstone is a geologic formation in northeastern New Mexico and southeastern Colorado. It was formed during the Campanian Age of the Cretaceous Period and contains fossils.

References

  1. 1 2 3 Lee, Willis T. (1917). "Geology and Paleontology of the Raton Mesa and Other Regions in Colorado and New Mexico". U.S. Geological Survey Professional Paper. 101: 55–61. Retrieved 5 November 2020.
  2. Pollastro, Richard M.; Pillmore, Charles L. (1987). "Mineralogy and Petrology of the Cretaceous-Tertiary Boundary Clay Bed and Adjacent Clay-Rich Rocks, Raton Basin, New Mexico and Colorado". SEPM Journal of Sedimentary Research. 57. doi:10.1306/212F8B61-2B24-11D7-8648000102C1865D.
  3. Pillmore, C.L (1969). "Geology and coal deposits of the Raton coal field, Colfax County, New Mexico". Mountain Geologist. 6: 129. Retrieved 5 November 2020.
  4. MacLachlan, M.E. (1976). "Lexicon of rock-stratigraphic units in Union, Colfax, Mora, and eastern Taos Counties, New Mexico" (PDF). New Mexico Geological Society Guidebook. 27. Retrieved 5 November 2020.
  5. Flores, R.M.; Bader, L.R. (1999). "A summary of Tertiary coal resources of the Raton basin, Colorado and New Mexico". U.S. Geological Survey Professional Paper. Chapter SR. 1625-A: SR-2. doi:10.3133/pp1625A.
  6. Orth, C. J.; Gilmore, J. S.; Knight, J. D.; Pillmore, C. L.; Tschudy, R. H.; Fassett, J. E. (18 December 1981). "An Iridium Abundance Anomaly at the Palynological Cretaceous-Tertiary Boundary in Northern New Mexico". Science. 214 (4527): 1341–1343. Bibcode:1981Sci...214.1341O. doi:10.1126/science.214.4527.1341. PMID   17812258. S2CID   9994340.
  7. Farley Fleming, R. (June 1989). "Fossil Scenedesmus (Chlorococcales) from the Raton Formation, Colorado and New Mexico, U.S.A.". Review of Palaeobotany and Palynology. 59 (1–4): 1–6. doi:10.1016/0034-6667(89)90002-X.
  8. Berry, Keith (2018). "Icacinaceae in the Early Middle Paleocene Raton Formation, Colorado". The Mountain Geologist. 55 (2): 75–86. doi:10.31582/rmag.mg.55.2.75 . Retrieved 15 July 2021.
  9. Berry, Keith (1 January 2020). "A Thelypteridaceous Fern from the Early Paleocene Raton Formation, South-central Colorado, and Its Importance in Interpreting the Climate of the Region". The Mountain Geologist. 57 (1): 5–20. doi:10.31582/rmag.mg.57.1.5. S2CID   216446403.
  10. Flores & Bader 1999, p. SR-1, 14-15.