Schmeissneria

Last updated

Schmeissneria
Temporal range: Early-Middle Jurassic, 200–170  Ma
Scientific classification
Kingdom:
Division:
Class:
Order:
Family:
Schmeissneriaceae
Genus:
Schmeissneria

Kirchner & Van Konijnenburg-Van Cittert, 1994
Species
  • S. microstachys(Presl, 1838) (type)
  • S. sinensisWang, 2007

Schmeissneria is a genus of possible early angiosperms recorded from the Lower Jurassic of Europe and the Middle Jurassic of China, [1] traditionally included in the Ginkgophyta. [2] [3]

Related Research Articles

<span class="mw-page-title-main">Flowering plant</span> Clade of seed plants that produce flowers

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae, commonly called angiosperms. They include all forbs, grasses and grass-like plants, a vast majority of broad-leaved trees, shrubs and vines, and most aquatic plants. The term "angiosperm" is derived from the Greek words ἀγγεῖον / angeion and σπέρμα / sperma ('seed'), meaning that the seeds are enclosed within a fruit. They are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species. Angiosperms were formerly called Magnoliophyta.

The Mesozoic Era is the second-to-last era of Earth's geological history, lasting from about 252 to 66 million years ago, comprising the Triassic, Jurassic and Cretaceous Periods. It is characterized by the dominance of gymnosperms and of archosaurian reptiles, such as the dinosaurs; a hot greenhouse climate; and the tectonic break-up of Pangaea. The Mesozoic is the middle of the three eras since complex life evolved: the Paleozoic, the Mesozoic, and the Cenozoic.

<span class="mw-page-title-main">Nymphaeales</span> Order of flowering plants

The Nymphaeales are an order of flowering plants, consisting of three families of aquatic plants, the Hydatellaceae, the Cabombaceae, and the Nymphaeaceae. It is one of the three orders of basal angiosperms, an early-diverging grade of flowering plants. At least 10 morphological characters unite the Nymphaeales. One of the traits is the absence of a vascular cambium, which is required to produce both xylem (wood) and phloem, which therefore are missing. Molecular synapomorphies are also known.

<span class="mw-page-title-main">Cycad</span> Division of naked seeded dioecious plants

Cycads are seed plants that typically have a stout and woody (ligneous) trunk with a crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, that is, individual plants of a species are either male or female. Cycads vary in size from having trunks only a few centimeters to several meters tall. They typically grow very slowly and live very long. Because of their superficial resemblance, they are sometimes mistaken for palms or ferns, but they are not closely related to either group.

<span class="mw-page-title-main">Gnetophyta</span> Division of plants containing three genera of gymnosperms

Gnetophyta is a division of plants, grouped within the gymnosperms, that consists of some 70 species across the three relict genera: Gnetum, Welwitschia, and Ephedra. The earliest unambiguous records of the group date to the Jurassic, and they achieved their highest diversity during the Early Cretaceous. The primary difference between gnetophytes and other gymnosperms is the presence of vessel elements, a system of small tubes (xylem) that transport water within the plant, similar to those found in flowering plants. Because of this, gnetophytes were once thought to be the closest gymnosperm relatives to flowering plants, but more recent molecular studies have brought this hypothesis into question, with many recent phylogenies finding them to be nested within the conifers.

<span class="mw-page-title-main">Gymnosperm</span> Clade of non-flowering, naked-seeded vascular plants

The gymnosperms are a group of seed-producing plants that includes conifers, cycads, Ginkgo, and gnetophytes, forming the clade Gymnospermae. The term gymnosperm comes from the composite word in Greek: γυμνόσπερμος, literally meaning 'naked seeds'. The name is based on the unenclosed condition of their seeds. The non-encased condition of their seeds contrasts with the seeds and ovules of flowering plants (angiosperms), which are enclosed within an ovary. Gymnosperm seeds develop either on the surface of scales or leaves, which are often modified to form cones, or on their own as in yew, Torreya, Ginkgo. Gymnosperm lifecycles involve alternation of generations. They have a dominant diploid sporophyte phase and a reduced haploid gametophyte phase which is dependent on the sporophytic phase. The term "gymnosperm" is often used in paleobotany to refer to all non-angiosperm seed plants. In that case, to specify the modern monophyletic group of gymnosperms, the term Acrogymnospermae is sometimes used.

<span class="mw-page-title-main">Bennettitales</span> Extinct order of seed plants

Bennettitales is an extinct order of seed plants that first appeared in the Permian period and became extinct in most areas toward the end of the Cretaceous. Bennettitales were amongst the most common seed plants of the Mesozoic, and had morphologies including shrub and cycad-like forms. The foliage of bennettitaleans is superficially nearly indistinguishable from that of cycads, but they are distinguished from cycads by their more complex flower-like reproductive organs, at least some of which were likely pollinated by insects.

<span class="mw-page-title-main">Cheirolepidiaceae</span> Extinct family of conifers

Cheirolepidiaceae is an extinct family of conifers. They first appeared in the Triassic, and were widespread during most of the Mesozoic era. They are united by the possession of a distinctive pollen type assigned to the form genus Classopollis. The name Frenelopsidaceae or "frenelopsids" has been used for a group of Cheirolepidiaceae with jointed stems, thick internode cuticles, sheathing leaf bases and reduced free leaf tips. The leaf morphology has been noted as being similar to that of halophyte Salicornia. Several members of the family appear to have been adapted for semi-arid and coastal settings, with a high tolerance of saline conditions. Cheirolepidiaceae disappeared from most regions of the world during the Cenomanian-Turonian stages of the Late Cretaceous, but reappeared in South America during the Maastrichtian, the final stage of the Cretaceous, increasing in abundance after the K-Pg extinction and being a prominent part of the regional flora during the Paleocene, before going extinct.

<i>Ginkgo</i> Genus of ancient seed plants with a single surviving species

Ginkgo is a genus of non-flowering seed plants. The scientific name is also used as the English name. The order to which it belongs, Ginkgoales, first appeared in the Permian, 270 million years ago, and Ginkgo is now the only living genus within the order. The rate of evolution within the genus has been slow, and almost all its species had become extinct by the end of the Pliocene. The sole surviving species, Ginkgo biloba, is found in the wild only in China, but is cultivated around the world. The relationships between ginkgos and other groups of plants are not fully resolved.

<span class="mw-page-title-main">Caytoniales</span> Extinct order of plants

The Caytoniales are an extinct order of seed plants known from fossils collected throughout the Mesozoic Era, around 252 to 66 million years ago. They are regarded as seed ferns because they are seed-bearing plants with fern-like leaves. Although at one time considered angiosperms because of their berry-like cupules, that hypothesis was later disproven. Nevertheless, some authorities consider them likely ancestors or close relatives of angiosperms. The origin of angiosperms remains unclear, and they cannot be linked with any known seed plants groups with certainty.

<span class="mw-page-title-main">Mesangiospermae</span> One of two clades of flowering plants

Mesangiospermae is a clade of flowering plants (angiosperms), informally called "mesangiosperms". They are one of two main groups of angiosperms. It is a name created under the rules of the PhyloCode system of phylogenetic nomenclature. There are about 350,000 species of mesangiosperms. The mesangiosperms contain about 99.95% of the flowering plants, assuming that there are about 175 species not in this group and about 350,000 that are. While such a clade with a similar circumscription exists in the APG III system, it was not given a name.

The Cretaceous Terrestrial Revolution, also known as the Angiosperm Terrestrial Revolution (ATR) by authors who consider it to have lasted into the Palaeogene, describes the intense floral diversification of flowering plants (angiosperms) and the coevolution of pollinating insects, as well as the subsequent faunal radiation of frugivorous, nectarivorous and insectivorous avians, mammals, lissamphibians, squamate reptiles and web-spinning spiders during the Middle to Late Cretaceous, from around 125 Mya to 80 Mya. Alternatively, according to Michael Benton, the ATR is proposed to have lasted from 100 Ma, when the first highly diverse angiosperm leaf floras are known, to 50 Ma, during the Early Eocene Climatic Optimum, by which point most crown lineages of angiosperms had evolved.

The Haifanggou Formation, also known as the Jiulongshan Formation, is a fossil-bearing rock deposit located near Daohugou village of Ningcheng County, in Inner Mongolia, northeastern China.

<span class="mw-page-title-main">Icacinales</span> Order of flowering plants

Icacinales is an order of flowering plants.

Xingxueanthus is an extinct genus of plants of dubious affinity which existed in China during the middle Jurassic period. It was first named by Xin Wang and Shijun Wang in 2010 and the type species is Xingxueanthus sinensis.

Solaranthus is an extinct genus of plants with contentious affinities which has been found fossilized in the Jiulongshan Formation of China. It dates to the middle Jurassic period. It was first named by Shaolin Zheng and Xin Wang in 2010 and the type species is Solaranthus daohugouensis.

Nanjinganthus dendrostyla is a fossil plant known from Early Jurassic sediments in China and proposed by Fu, et al. to represent a pre-Cretaceous angiosperm. The material consists of numerous compression fossils which bear a resemblance to flowers. The segments bear prominent ridges, suggesting veins, and a few specimens have a branched axis perpendicular to the segments, interpreted by Fu, et al. as a branched style. Beneath the putative perianth, Fu, et al. interpret the existence of ovules enclosed in ovaries, however, the preservation of this region of the structure is poor.

This paleobotany list records new fossil plant taxa that were to be described during the year 2022, as well as notes other significant paleobotany discoveries and events which occurred during 2022.

This paleobotany list records new fossil plant taxa that were to be described during the year 2023, as well as notes other significant paleobotany discoveries and events which occurred during 2023.

The fossil history of flowering plants records the development of flowers and other distinctive structures of the angiosperms, now the dominant group of plants on land. The history is controversial as flowering plants appear in great diversity in the Cretaceous, with scanty and debatable records before that, creating a puzzle for evolutionary biologists that Charles Darwin named an "abominable mystery". Nonetheless, in April 2024, scientists reported an overview of the origin and development of flowering plants over the years based on extensive genetic studies.

References

  1. Xin Wing; Shuying Duan; Baoyin Geng; Jinzhong Cui; Yong Yang (2007). "Schmeissneria: A missing link to angiosperms?". BMC Evolutionary Biology . 7: 14. doi: 10.1186/1471-2148-7-14 . PMC   1805421 . PMID   17284326.
  2. Coiro, Mario; Doyle, James A.; Hilton, Jason (2019-02-26). "How deep is the conflict between molecular and fossil evidence on the age of angiosperms?". New Phytologist. 223 (1): 83–99. doi: 10.1111/nph.15708 . PMID   30681148.
  3. Zhi-Yan Zhou (2009). "An overview of fossil Ginkgoales". Palaeoworld . 18 (1): 1–22. doi:10.1016/j.palwor.2009.01.001.