Sierra Nevada Batholith

Last updated
Half Dome, Yosemite, a classic granite dome of the Sierra Nevada Batholith Yosemite 20 bg 090404.jpg
Half Dome, Yosemite, a classic granite dome of the Sierra Nevada Batholith

The Sierra Nevada Batholith is a large batholith that is approximately 400 miles long and 60-80 miles wide which forms the core of the Sierra Nevada mountain range in California, exposed at the surface as granite. [1]

Contents

The batholith is composed of many individual masses of rock called plutons , which formed deep underground during separate episodes of magma intrusion, millions of years before the Sierra itself first began to rise. The extremely hot, relatively buoyant plutons, also called plutonic diapirs , intruded through denser, native country rock and sediments, never reaching the surface. At the same time, some magma managed to reach the surface as volcanic lava flows, but most of it cooled and hardened below the surface and remained buried for millions of years.

The batholith – the combined mass of subsurface plutons – became exposed as tectonic forces initiated the formation of the Basin and Range geologic province, including the Sierra Nevada. As the mountains rose, the forces of erosion eventually wore down the material which had covered the batholith for millions of years. The exposed portions of the batholith became the granite peaks of the High Sierra, including Mount Whitney, Half Dome and El Capitan. Most of the batholith, however, remains below the surface.

Origins

The Sierra batholith was formed when the Farallon Plate subducted below the North American Plate. The resultant molten rock rose through the Earth's crust over the span of 100 Ma, forming several plutons, or a chain of volcanoes if the magma reached the surface. Most of the granitic rocks formed between 105 and 85 Ma, during the Cretaceous, with pluton formation ending around about 70 Ma. Erosion from 85 until 15 Ma removed the volcanic rocks and exposed the granitic core. [2] [3] [4]

Cooling and Uplift

Around 80-76 million years ago, subduction beneath the Sierra Nevada batholith transitioned from steep-angle to shallow-angle. This shut down arc magmatism, moving the volcanic arc westward and leaving the Sierra Nevada block in a forearc setting. Apatite and Sphene fission track thermochronology done by Dumitru (1990) revealed a period of rapid decrease in geothermal gradient (>270 °C to <70 °C from 80Ma to 60-50Ma) as the block cooled, followed by a relatively stable period of subnormal geothermal gradients (5-15 °C/km) throughout the Cenozoic. Modeling of the rapid decrease in geothermal gradient returned a crude estimate of depth to the subducting plate of about 35–50 km, with a hard upper limit of 60 km. This is much shallower than the more typical ~120 km depth to the subducting plate in volcanic arc regimes. [5]

Using data from his thermochronology analysis, Dumitru (1990) also constrained ages for the beginning of unroofing and uplift of the Sierra Nevada block to approximately 30-15Ma. Fission tracks – destructive remnants of radioactive decay in Uranium-bearing minerals – were shorter than expected in samples taken from several Sierra Nevada plutons. This implied a late-Cenozoic residency at depth, meaning the unroofing and uplift of the Sierra Nevada block happened rapidly near the end of the Cenozoic. Geologic evidence in the form of erosion surfaces, paleo-canyons, and related deposits suggests the majority of the uplift was achieved prior to 4-10Ma. [5]

Basement Units

The plutons associated with the Sierra Nevada Batholith intruded into pre-existing rocks on the North American Continent. As the plutons intruded into these rocks, many were altered or metamorphosed. The "host rocks" include passive margin sequence units, deep water sediments, and shallow-water passive margin units. [6] There are several locations that the contact between the granitic intrusions and the now metamorphosed sedimentary units can be seen. These unique contacts are called roof pendants.

See also

Related Research Articles

<span class="mw-page-title-main">Batholith</span> Large igneous rock intrusion

A batholith is a large mass of intrusive igneous rock, larger than 100 km2 (40 sq mi) in area, that forms from cooled magma deep in Earth's crust. Batholiths are almost always made mostly of felsic or intermediate rock types, such as granite, quartz monzonite, or diorite.

<span class="mw-page-title-main">Geology of the Yosemite area</span>

The exposed geology of the Yosemite area includes primarily granitic rocks with some older metamorphic rock. The first rocks were laid down in Precambrian times, when the area around Yosemite National Park was on the edge of a very young North American continent. The sediment that formed the area first settled in the waters of a shallow sea, and compressive forces from a subduction zone in the mid-Paleozoic fused the seabed rocks and sediments, appending them to the continent. Heat generated from the subduction created island arcs of volcanoes that were also thrust into the area of the park. In time, the igneous and sedimentary rocks of the area were later heavily metamorphosed.

<span class="mw-page-title-main">Intrusive rock</span> Magmatic rock formed below the surface

Intrusive rock is formed when magma penetrates existing rock, crystallizes, and solidifies underground to form intrusions, such as batholiths, dikes, sills, laccoliths, and volcanic necks.

<span class="mw-page-title-main">Geology of the Death Valley area</span> Geology of the area in California and Nevada

The exposed geology of the Death Valley area presents a diverse and complex set of at least 23 formations of sedimentary units, two major gaps in the geologic record called unconformities, and at least one distinct set of related formations geologists call a group. The oldest rocks in the area that now includes Death Valley National Park are extensively metamorphosed by intense heat and pressure and are at least 1700 million years old. These rocks were intruded by a mass of granite 1400 Ma and later uplifted and exposed to nearly 500 million years of erosion.

<span class="mw-page-title-main">Smartville Block</span> Volcanic arc accreted onto the North American Plate

The Smartville Block, also called the Smartville Ophiolite, Smartville Complex, or Smartville Intrusive Complex, is a geologic terrane formed in the ocean from a volcanic island arc that was accreted onto the North American Plate during the late Jurassic. The collision created sufficient crustal heating to drive mineral-laden water up through numerous fissures along the contact zone. When these cooled, among the precipitating minerals was gold. Associated with the Western Metamorphic Belt of the Sierra Nevada foothills it extends from the central Sierra Nevada mountain range, due west, under a section of the Central Valley and California Coast Ranges, in northern California. The ophiolitic sequence found in this terrane is one of several major ophiolites found in California. Ophiolites are crustal and upper-mantle rocks from the ocean floor that have been moved on land. Ophiolites have been studied extensively regarding the movement of crustal rocks by plate tectonics.

<span class="mw-page-title-main">Barberton Greenstone Belt</span> Ancient granite-greenstone terrane in South Africa

The Barberton Greenstone Belt is situated on the eastern edge of the Kaapvaal Craton in South Africa. It is known for its gold mineralisation and for its komatiites, an unusual type of ultramafic volcanic rock named after the Komati River that flows through the belt. Some of the oldest exposed rocks on Earth are located in the Barberton Greenstone Belt of the Eswatini–Barberton areas and these contain some of the oldest traces of life on Earth, second only to the Isua Greenstone Belt of Western Greenland. The Makhonjwa Mountains make up 40% of the Baberton belt. It is named after the town Barberton, Mpumalanga.

<span class="mw-page-title-main">Igneous intrusion</span> Body of intrusive igneous rocks

In geology, an igneous intrusion is a body of intrusive igneous rock that forms by crystallization of magma slowly cooling below the surface of the Earth. Intrusions have a wide variety of forms and compositions, illustrated by examples like the Palisades Sill of New York and New Jersey; the Henry Mountains of Utah; the Bushveld Igneous Complex of South Africa; Shiprock in New Mexico; the Ardnamurchan intrusion in Scotland; and the Sierra Nevada Batholith of California.

In geology, a chonolith is a type of igneous rock intrusion. Igneous rock intrusions are bodies of igneous rock that are formed by the crystallization of cooled magma below the Earth’s surface. These formations are termed intrusive rocks due the magma intruding rock layers but never reaching the surface. However, sometimes portions of plutons can become exposed at the Earth’s surface and thus the minerals can be observed since they are large enough. The different plutonic formations are named based on the different shapes that the cooled crystallized magma takes. However, all plutonic formations that have irregular shapes and do not share the same characteristics as other plutonic structures are termed chonoliths. Other plutonic structures that have specific shapes include: dikes, sills, laccoliths and sheets. Another unique characteristic of chonoliths is that there is a floor or base present which is typically absent in other types of intrusions.

<span class="mw-page-title-main">Boulder Batholith</span>

The Boulder Batholith is a relatively small batholith in southwestern Montana, United States, exposed at the surface as granite and serving as the host rock for rich mineralized deposits at Butte and other locations. The batholith lies roughly between Butte and Helena, and between the Deer Lodge Valley and the Broadwater Valley. The volcanic Elkhorn Mountains are a large mass of forested lava associated with the batholith.

In early Triassic time, an extensive volcanic arc system called the Sierran Arc began to develop along the western margin of the North American continent. In Southern California, this volcanic arc would develop throughout the Mesozoic Era to become the geologic regions known as the Sierra Nevada Batholith, the Peninsular Ranges Batholith,, and other plutonic and volcanic centers throughout the greater Mojave Desert region.

<span class="mw-page-title-main">Cathedral Peak Granodiorite</span> Suite of intrusive rock in the Sierra Nevada

The Cathedral Peak Granodiorite (CPG) was named after its type locality, Cathedral Peak in Yosemite National Park, California. The granodiorite forms part of the Tuolumne Intrusive Suite, one of the four major intrusive suites within the Sierra Nevada. It has been assigned radiometric ages between 88 and 87 million years and therefore reached its cooling stage in the Coniacian.

<span class="mw-page-title-main">Igneous rock</span> Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.

<span class="mw-page-title-main">Cornubian batholith</span> Granite rock in southwest England

The Cornubian batholith is a large mass of granite rock, formed about 280 million years ago, which lies beneath much of Cornwall and Devon in the south-western peninsula of Great Britain. The main exposed masses of granite are seen at Dartmoor, Bodmin Moor, St Austell, Carnmenellis, Land's End and the Isles of Scilly. The intrusion is associated with significant quantities of minerals particularly cassiterite, an ore of tin which has been mined since about 2000 BC. Other minerals include china clay and ores of copper, lead, zinc and tungsten.

<span class="mw-page-title-main">Vishnu Basement Rocks</span> Lithostratigraphic unit in the Grand Canyon, Arizona

The Vishnu Basement Rocks is the name recommended for all Early Proterozoic crystalline rocks exposed in the Grand Canyon region. They form the crystalline basement rocks that underlie the Bass Limestone of the Unkar Group of the Grand Canyon Supergroup and the Tapeats Sandstone of the Tonto Group. These basement rocks have also been called either the Vishnu Complex or Vishnu Metamorphic Complex. These Early Proterozoic crystalline rocks consist of metamorphic rocks that are collectively known as the Granite Gorge Metamorphic Suite; sections of the Vishnu Basement Rocks contain Early Paleoproterozoic granite, granitic pegmatite, aplite, and granodiorite that have intruded these metamorphic rocks, and also, intrusive Early Paleoproterozoic ultramafic rocks.

<span class="mw-page-title-main">Kuna Crest Granodiorite</span> Kuna Crest Granodiorite, Granodiorite of Glen Aulin is a granodiorite found Yosemite National Park

Kuna Crest Granodiorite, is found, in Yosemite National Park, United States. The granodiorite forms part of the Tuolumne Intrusive Suite, one of the four major intrusive suites within the Sierra Nevada. Of the Tuolumne Intrusive Suite, it is the oldest and darkest rock.

<span class="mw-page-title-main">Tuolumne Intrusive Suite</span> One of several intrusive suites in Yosemite National Park

The Tuolumne Intrusive Suite is the youngest and most extensive of the intrusive suites of Yosemite National Park, and also comprises about 1/3 of the park's area. The Suite includes Half Dome Granodiorite, Cathedral Peak Granite, and Kuna Crest Granodiorite.

The Achala Batholith is a group of plutons in the Sierras de Córdoba in central Argentina. With a mapped surface of over 2500 km2 it constitutes the largest group of intrusions exposed in the Sierras Pampeanas. The oldest reference to the batholith dates to 1932.

The geology of Alaska includes Precambrian igneous and metamorphic rocks formed in offshore terranes and added to the western margin of North America from the Paleozoic through modern times. The region was submerged for much of the Paleozoic and Mesozoic and formed extensive oil and gas reserves due to tectonic activity in the Arctic Ocean. Alaska was largely ice free during the Pleistocene, allowing humans to migrate into the Americas.

The geology of Montana includes thick sequences of Paleozoic, Mesozoic and Cenozoic sedimentary rocks overlying ancient Archean and Proterozoic crystalline basement rock. Eastern Montana has considerable oil and gas resources, while the uplifted Rocky Mountains in the west, which resulted from the Laramide orogeny and other tectonic events have locations with metal ore.

<span class="mw-page-title-main">Geology and geological history of California</span> Description of the geology of California

The geology of California is highly complex, with numerous mountain ranges, substantial faulting and tectonic activity, rich natural resources and a history of both ancient and comparatively recent intense geological activity. The area formed as a series of small island arcs, deep-ocean sediments and mafic oceanic crust accreted to the western edge of North America, producing a series of deep basins and high mountain ranges.

References

  1. Irwin, William; Wooden, Joseph (2001). "Map Showing Plutons and Accreted Terranes of the Sierra Nevada, California, With a Tabulation of U/Pb Isotopic Ages" (PDF). USGS. Retrieved 10 October 2021.
  2. "Geology of the Sierra Nevada". Yosemite Field Station. University of California, Merced. Retrieved 27 March 2022.
  3. Unger, Tanya. "Mesozoic Plutonism in the central Sierra Nevada Batholith: A review of works on mineralogy and isotopes in relation to models for batholith formation". Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder. Retrieved 27 March 2022.
  4. Memeti, Vali; Paterson, Scott; Putirka, Keith, eds. (2014). Formation of the Sierra Nevada Batholith; Magmatic and Tectonic Processes and Their Tempos, Field Guide 34. Boulder: The Geological Society of America. ISBN   9780813700342.
  5. 1 2 Dumitru, Trevor A. (1990). "Subnormal Cenozoic geothermal gradients in the extinct Sierra Nevada magmatic arc: Consequences of Laramide and Post-Laramide shallow-angle subduction". Journal of Geophysical Research. 95 (B4): 4925. doi:10.1029/jb095ib04p04925. ISSN   0148-0227.
  6. Paterson, Scott. "Day 6: Overview of arc processes and tempos" (PDF).