Sign (mathematics)

Last updated
The plus and minus symbols are used to show the sign of a number. PlusMinus.svg
The plus and minus symbols are used to show the sign of a number.

In mathematics, the sign of a real number is its property of being either positive, negative, or 0. Depending on local conventions, zero may be considered as having its own unique sign, having no sign, or having both positive and negative sign. In some contexts, it makes sense to distinguish between a positive and a negative zero.

Contents

In mathematics and physics, the phrase "change of sign" is associated with exchanging an object for its additive inverse (multiplication with −1, negation), an operation which is not restricted to real numbers. It applies among other objects to vectors, matrices, and complex numbers, which are not prescribed to be only either positive, negative, or zero.

The word "sign" is also often used to indicate binary aspects of mathematical or scientific objects, such as odd and even (sign of a permutation), sense of orientation or rotation (cw/ccw), one sided limits, and other concepts described in § Other meanings below.

Sign of a number

Numbers from various number systems, like integers, rationals, complex numbers, quaternions, octonions, ... may have multiple attributes, that fix certain properties of a number. A number system that bears the structure of an ordered ring contains a unique number that when added with any number leaves the latter unchanged. This unique number is known as the system's additive identity element. For example, the integers has the structure of an ordered ring. This number is generally denoted as 0. Because of the total order in this ring, there are numbers greater than zero, called the positive numbers. Another property required for a ring to be ordered is that, for each positive number, there exists a unique corresponding number less than 0 whose sum with the original positive number is 0. These numbers less than 0 are called the negative numbers. The numbers in each such pair are their respective additive inverses. This attribute of a number, being exclusively either zero(0), positive(+), or negative(−), is called its sign, and is often encoded to the real numbers 0, 1, and −1, respectively (similar to the way the sign function is defined). [1] Since rational and real numbers are also ordered rings (in fact ordered fields), the sign attribute also applies to these number systems.

When a minus sign is used in between two numbers, it represents the binary operation of subtraction. When a minus sign is written before a single number, it represents the unary operation of yielding the additive inverse (sometimes called negation) of the operand. Abstractly then, the difference of two number is the sum of the minuend with the additive inverse of the subtrahend. While 0 is its own additive inverse (−0 = 0), the additive inverse of a positive number is negative, and the additive inverse of a negative number is positive. A double application of this operation is written as −(−3) = 3. The plus sign is predominantly used in algebra to denote the binary operation of addition, and only rarely to emphasize the positivity of an expression.

In common numeral notation (used in arithmetic and elsewhere), the sign of a number is often made explicit by placing a plus or a minus sign before the number. For example, +3 denotes "positive three", and −3 denotes "negative three" (algebraically: the additive inverse of 3). Without specific context (or when no explicit sign is given), a number is interpreted per default as positive. This notation establishes a strong association of the minus sign "" with negative numbers, and the plus sign "+" with positive numbers.

Sign of zero

Within the convention of zero being neither positive nor negative, a specific sign-value 0 may be assigned to the number value 0. This is exploited in the -function, as defined for real numbers. [1] In arithmetic, +0 and −0 both denote the same number 0. There is generally no danger of confusing the value with its sign, although the convention of assigning both signs to 0 does not immediately allow for this discrimination.

In certain European countries, e.g. in Belgium and France, 0 is considered to be both positive and negative following the convention set forth by Nicolas Bourbaki. [2]

In some contexts, such as floating-point representations of real numbers within computers, it is useful to consider signed versions of zero, with signed zeros referring to different, discrete number representations (see signed number representations for more).

The symbols +0 and −0 rarely appear as substitutes for 0+ and 0, used in calculus and mathematical analysis for one-sided limits (right-sided limit and left-sided limit, respectively). This notation refers to the behaviour of a function as its real input variable approaches 0 along positive (resp., negative) values; the two limits need not exist or agree.

Terminology for signs

When 0 is said to be neither positive nor negative, the following phrases may refer to the sign of a number:

When 0 is said to be both positive and negative,[ citation needed ] modified phrases are used to refer to the sign of a number:

For example, the absolute value of a real number is always "non-negative", but is not necessarily "positive" in the first interpretation, whereas in the second interpretation, it is called "positive"—though not necessarily "strictly positive".

The same terminology is sometimes used for functions that yield real or other signed values. For example, a function would be called a positive function if its values are positive for all arguments of its domain, or a non-negative function if all of its values are non-negative.

Complex numbers

Complex numbers are impossible to order, so they cannot carry the structure of an ordered ring, and, accordingly, cannot be partitioned into positive and negative complex numbers. They do, however, share an attribute with the reals, which is called absolute value or magnitude. Magnitudes are always non-negative real numbers, and to any non-zero number there belongs a positive real number, its absolute value.

For example, the absolute value of −3 and the absolute value of 3 are both equal to 3. This is written in symbols as |−3| = 3 and |3| = 3.

In general, any arbitrary real value can be specified by its magnitude and its sign. Using the standard encoding, any real value is given by the product of the magnitude and the sign in standard encoding. This relation can be generalized to define a sign for complex numbers.

Since the real and complex numbers both form a field and contain the positive reals, they also contain the reciprocals of the magnitudes of all non-zero numbers. This means that any non-zero number may be multiplied with the reciprocal of its magnitude, that is, divided by its magnitude. It is immediate that the quotient of any non-zero real number by its magnitude yields exactly its sign. By analogy, the sign of a complex numberz can be defined as the quotient of z and its magnitude |z|. The sign of a complex number is the exponential of the product of its argument with the imaginary unit. represents in some sense its complex argument. This is to be compared to the sign of real numbers, except with For the definition of a complex sign-function. see § Complex sign function below.

Sign functions

Real sign function y = sgn(x) Signum function.svg
Real sign function y = sgn(x)

When dealing with numbers, it is often convenient to have their sign available as a number. This is accomplished by functions that extract the sign of any number, and map it to a predefined value before making it available for further calculations. For example, it might be advantageous to formulate an intricate algorithm for positive values only, and take care of the sign only afterwards.

Real sign function

The sign function or signum function extracts the sign of a real number, by mapping the set of real numbers to the set of the three reals It can be defined as follows: [1] Thus sgn(x) is 1 when x is positive, and sgn(x) is −1 when x is negative. For non-zero values of x, this function can also be defined by the formula where |x| is the absolute value of x.

Complex sign function

While a real number has a 1-dimensional direction, a complex number has a 2-dimensional direction. The complex sign function requires the magnitude of its argument z = x + iy, which can be calculated as

Analogous to above, the complex sign function extracts the complex sign of a complex number by mapping the set of non-zero complex numbers to the set of unimodular complex numbers, and 0 to 0: It may be defined as follows:

Let z be also expressed by its magnitude and one of its arguments φ as z = |z|e, then [3]

This definition may also be recognized as a normalized vector, that is, a vector whose direction is unchanged, and whose length is fixed to unity. If the original value was R,θ in polar form, then sign(R, θ) is 1 θ. Extension of sign() or signum() to any number of dimensions is obvious, but this has already been defined as normalizing a vector.

Signs per convention

In situations where there are exactly two possibilities on equal footing for an attribute, these are often labelled by convention as plus and minus, respectively. In some contexts, the choice of this assignment (i.e., which range of values is considered positive and which negative) is natural, whereas in other contexts, the choice is arbitrary, making an explicit sign convention necessary, the only requirement being consistent use of the convention.

Sign of an angle

Measuring from the x-axis, angles on the unit circle count as positive in the counterclockwise direction, and negative in the clockwise direction. Angles on the unit circle.svg
Measuring from the x-axis, angles on the unit circle count as positive in the counterclockwise direction, and negative in the clockwise direction.

In many contexts, it is common to associate a sign with the measure of an angle, particularly an oriented angle or an angle of rotation. In such a situation, the sign indicates whether the angle is in the clockwise or counterclockwise direction. Though different conventions can be used, it is common in mathematics to have counterclockwise angles count as positive, and clockwise angles count as negative. [4]

It is also possible to associate a sign to an angle of rotation in three dimensions, assuming that the axis of rotation has been oriented. Specifically, a right-handed rotation around an oriented axis typically counts as positive, while a left-handed rotation counts as negative.

An angle which is the negative of a given angle has an equal arc, but the opposite axis. [5]

Sign of a change

When a quantity x changes over time, the change in the value of x is typically defined by the equation

Using this convention, an increase in x counts as positive change, while a decrease of x counts as negative change. In calculus, this same convention is used in the definition of the derivative. As a result, any increasing function has positive derivative, while any decreasing function has negative derivative.

Sign of a direction

When studying one-dimensional displacements and motions in analytic geometry and physics, it is common to label the two possible directions as positive and negative. Because the number line is usually drawn with positive numbers to the right, and negative numbers to the left, a common convention is for motions to the right to be given a positive sign, and for motions to the left to be given a negative sign.

Number-line.svg

On the Cartesian plane, the rightward and upward directions are usually thought of as positive, with rightward being the positive x-direction, and upward being the positive y-direction. If a displacement vector is separated into its vector components, then the horizontal part will be positive for motion to the right and negative for motion to the left, while the vertical part will be positive for motion upward and negative for motion downward.

Likewise, a negative speed (rate of change of displacement) implies a velocity in the opposite direction, i.e., receding instead of advancing; a special case is the radial speed.

In 3D space, notions related to sign can be found in the two normal orientations and orientability in general.

Signedness in computing

most-significant bit
01111111=127
01111110=126
00000010=2
00000001=1
00000000=0
11111111=−1
11111110=−2
10000001=−127
10000000=−128
Most computers use two's complement to represent the sign of an integer.

In computing, an integer value may be either signed or unsigned, depending on whether the computer is keeping track of a sign for the number. By restricting an integer variable to non-negative values only, one more bit can be used for storing the value of a number. Because of the way integer arithmetic is done within computers, signed number representations usually do not store the sign as a single independent bit, instead using e.g. two's complement.

In contrast, real numbers are stored and manipulated as floating point values. The floating point values are represented using three separate values, mantissa, exponent, and sign. Given this separate sign bit, it is possible to represent both positive and negative zero. Most programming languages normally treat positive zero and negative zero as equivalent values, albeit, they provide means by which the distinction can be detected.

Other meanings

Electric charge may be positive or negative. VFPt dipole electric.svg
Electric charge may be positive or negative.

In addition to the sign of a real number, the word sign is also used in various related ways throughout mathematics and other sciences:

See also

Related Research Articles

<span class="mw-page-title-main">Absolute value</span> Distance from zero to a number

In mathematics, the absolute value or modulus of a real number , denoted , is the non-negative value of without regard to its sign. Namely, if is a positive number, and if is negative, and . For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3. The absolute value of a number may be thought of as its distance from zero.

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.

In mathematics, a quadratic equation is an equation that can be rearranged in standard form as where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term.

<span class="mw-page-title-main">Square root</span> Number whose square is a given number

In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square is x. For example, 4 and −4 are square roots of 16 because .

<span class="mw-page-title-main">Pendulum</span> Mechanism for regulating the speed of clocks

A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing.

In computing, NaN, standing for Not a Number, is a particular value of a numeric data type which is undefined as a number, such as the result of 0/0. Systematic use of NaNs was introduced by the IEEE 754 floating-point standard in 1985, along with the representation of other non-finite quantities such as infinities.

<span class="mw-page-title-main">Imaginary unit</span> Principal square root of −1

The imaginary unit or unit imaginary number is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3i.

<span class="mw-page-title-main">Exponentiation</span> Arithmetic operation

In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; often said as "b to the power n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: In particular, .

<span class="mw-page-title-main">Negative number</span> Real number that is strictly less than zero

In mathematics, a negative number is the opposite (mathematics) of a positive real number. Equivalently, a negative number is a real number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset. If a quantity, such as the charge on an electron, may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as positive and negative. Negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, −(−3) = 3 because the opposite of an opposite is the original value.

<span class="mw-page-title-main">Rounding</span> Replacing a number with a simpler value

Rounding or rounding off means replacing a number with an approximate value that has a shorter, simpler, or more explicit representation. For example, replacing $23.4476 with $23.45, the fraction 312/937 with 1/3, or the expression √2 with 1.414.

<span class="mw-page-title-main">Division by zero</span> Class of mathematical expression

In mathematics, division by zero, division where the divisor (denominator) is zero, is a unique and problematic special case. Using fraction notation, the general example can be written as , where is the dividend (numerator).

In mathematics, the additive inverse of an element x, denoted -x, is the element that when added to x, yields the additive identity, 0. In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero element.

<span class="mw-page-title-main">Multiplicative inverse</span> Number which when multiplied by x equals 1

In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).

<span class="mw-page-title-main">Sign function</span> Mathematical function returning -1, 0 or 1

In mathematics, the sign function or signum function is a function that has the value −1, +1 or 0 according to whether the sign of a given real number is positive or negative, or the given number is itself zero. In mathematical notation the sign function is often represented as or .

<span class="mw-page-title-main">Square (algebra)</span> Product of a number by itself

In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power 2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations x^2 (caret) or x**2 may be used in place of x2. The adjective which corresponds to squaring is quadratic.

In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.

In functional analysis and related areas of mathematics, a BK-space or Banach coordinate space is a sequence space endowed with a suitable norm to turn it into a Banach space. All BK-spaces are normable FK-spaces.

Projected dynamical systems is a mathematical theory investigating the behaviour of dynamical systems where solutions are restricted to a constraint set. The discipline shares connections to and applications with both the static world of optimization and equilibrium problems and the dynamical world of ordinary differential equations. A projected dynamical system is given by the flow to the projected differential equation

<span class="mw-page-title-main">Argument (complex analysis)</span> Angle of complex number about real axis

In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in Figure 1. By convention the positive real axis is drawn pointing rightward, the positive imaginary axis is drawn pointing upward, and complex numbers with positive real part are considered to have an anticlockwise argument with positive sign.

In mathematics, the set of positive real numbers, is the subset of those real numbers that are greater than zero. The non-negative real numbers, also include zero. Although the symbols and are ambiguously used for either of these, the notation or for and or for has also been widely employed, is aligned with the practice in algebra of denoting the exclusion of the zero element with a star, and should be understandable to most practicing mathematicians.

References

  1. 1 2 3 Weisstein, Eric W. "Sign". mathworld.wolfram.com. Retrieved 2020-08-26.
  2. Bourbaki, Nicolas. Éléments de mathématique: Algèbre. p. A VI.4..
  3. "SignumFunction". www.cs.cas.cz. Retrieved 2020-08-26.
  4. "Sign of Angles | What is An Angle? | Positive Angle | Negative Angle". Math Only Math. Retrieved 2020-08-26.
  5. Alexander Macfarlane (1894) "Fundamental theorems of analysis generalized for space", page 3, link via Internet Archive