Smoke screen

Last updated
A U.S. Army Humvee laying a smoke screen Smoke screen.jpg
A U.S. Army Humvee laying a smoke screen
Amphibious vehicles deploying smoke grenades US Navy 100915-N-4894D-110 Marines participate in the 60th anniversary of teh Incheon Landing Operation.jpg
Amphibious vehicles deploying smoke grenades

A smoke screen is smoke released to mask the movement or location of military units such as infantry, tanks, aircraft, or ships.


Smoke screens are commonly deployed either by a canister (such as a grenade) or generated by a vehicle (such as a tank or a warship).

Whereas smoke screens were originally used to hide movement from enemies' line of sight, modern technology means that they are now also available in new forms; they can screen in the infrared as well as visible spectrum of light to prevent detection by infrared sensors or viewers, and they are also available for vehicles in a super-dense form used to block laser beams of enemy target designators or range finders.


Smoke grenades

Smoke grenade G-Fig1-13.JPG
Smoke grenade

These are canister-type grenades used as a ground-to-ground or ground-to-air signalling device. The body consists of a steel sheet metal cylinder with a few emission holes on the top and/or bottom to allow smoke release when the smoke composition inside the grenade is ignited. In those that produce colored smoke, the filler consists of 250 to 350 grams of colored (red, green, yellow or violet) smoke mixture (mostly potassium chlorate, sodium bicarbonate, lactose and a dye). In those that produce screening smoke, the filler usually consists of HC smoke mixture (hexachloroethane/zinc) or TA smoke mixture (terephthalic acid). Another type of smoke grenade is filled with white phosphorus (WP), which is spread by explosive action. The phosphorus catches fire in the presence of air, and burns with a brilliant yellow flame, while producing copious amounts of white smoke (phosphorus pentoxide). WP grenades double as incendiary grenades.

Smoke shell

Artillery and mortars can also fire smoke generating munitions, and are the main means of generating tactical smokescreens on land. As with grenades, artillery shells are available as both emission type smoke shell, and bursting smoke shell. Mortars nearly always use bursting smoke rounds because of the smaller size of mortar bombs and the greater efficiency of bursting rounds.

Smoke generators

Smoke generator used to cover bridge building activities during World War 2 "Soldiers of the 161st Chemical Smoke Generating Company, U.S. Third Army, move a barrel of oil in preparation to refill - NARA - 531229.jpg
Smoke generator used to cover bridge building activities during World War 2

Very large or sustained smoke screens are produced by a smoke generator. This machine heats a volatile material (typically oil or an oil based mixture) to evaporate it, then mixes the vapor with cool external air at a controlled rate so it condenses to a mist with a controlled droplet size. Cruder designs simply boiled waste oil over a heater, while more sophisticated ones sprayed a specially formulated oily composition ("fog oil") through nozzles onto a heated plate. Choice of a suitable oil, and careful control of cooling rate, can produce droplet sizes close to the ideal size for Mie scattering of visible light. This produces a very effective obscuration per weight of material used. This screen can then be sustained as long as the generator is supplied with oil, andespecially if a number of generators are usedthe screen can build up to a considerable size. One 50 gallon drum of fog oil can obscure 60 miles (97 km) of land in 15 minutes.

A tank creating smoke Olifant tank.jpg
A tank creating smoke

Whilst producing very large amounts of smoke relatively cheaply, these generators have a number of disadvantages. They are much slower to respond than pyrotechnic sources, and require a valuable piece of equipment to be sited at the point of emission of the smoke. They are also relatively heavy and not readily portable, which is a significant problem if the wind shifts. To overcome this latter problem they may be used in fixed posts widely dispersed over the battlefield, or else mounted on specially adapted vehicles. An example of the latter is the M56 Coyote generator.

Many armoured fighting vehicles can create smoke screens in a similar way, generally by injecting diesel fuel onto the hot exhaust.

Amphibious assault vehicles releasing smoke US Navy 100204-N-7843A-121 Republic of Korea amphibious assault vehicles release a smoke screen before hitting the beach during a Cobra Gold 2010 amphibious landing demonstration.jpg
Amphibious assault vehicles releasing smoke

Warships have sometimes used a simple variation of the smoke generator, by injecting fuel oil directly into the funnel, where it evaporates into a white cloud. An even simpler method that was used in the days of steam-propelled warships was to restrict the supply of air to the boiler. This resulted in incomplete combustion of the coal or oil, which produced a thick black smoke. Because the smoke was black, it absorbed heat from the sun and tended to rise above the water. Therefore, navies turned to various chemicals, such as titanium tetrachloride, that produce a white, low-lying cloud. [1] [2]

Infrared smokes

The proliferation of thermal imaging FLIR systems on the battlefields necessitates the use of obscurant smokes that are effectively opaque in the infrared part of electromagnetic spectrum. This kind of obscurant smoke is sometimes referred to as "Visual and Infrared Screening Smoke" (VIRSS). [3] To achieve this, the particle size and composition of the smokes has to be adjusted. One of the approaches is using an aerosol of burning red phosphorus particles and aluminium-coated glass fibers; the infrared emissions of such smoke curtains hides the weaker emissions of colder objects behind it, but the effect is only short-lived. Carbon (most often graphite) particles present in the smokes can also serve to absorb the beams of laser designators. Yet another possibility is a water fog sprayed around the vehicle; the presence of large droplets absorbs in infrared band and additionally serves as a countermeasure against radars in 94 GHz band. Other materials used as visible/infrared obscurants are micro-pulverized flakes of brass or graphite, particles of titanium dioxide, or terephthalic acid.

Older systems for production of infrared smoke work as generators of aerosol of dust with controlled particle size. Most contemporary vehicle-mounted systems use this approach. However, the aerosol stays airborne only for a short time.

The brass particles used in some infrared smoke grenades are typically composed of 70% copper and 30% zinc. They are shaped as irregular flakes with a diameter of about 1.7 µm and thickness of 80–320 nm. [4]

Some experimental obscurants work in both infrared and millimeter wave region. They include carbon fibers, metal coated fibers or glass particles, metal microwires, particles of iron and of suitable polymers. [5]

Chemicals used

Zinc chloride

Zinc chloride smoke is grey-white and consists of tiny particles of zinc chloride. The most common mixture for generating these is a zinc chloride smoke mixture (HC), consisting of hexachloroethane, grained aluminium and zinc oxide. The smoke consists of zinc chloride, zinc oxychlorides, and hydrochloric acid, which absorb the moisture in the air. The smoke also contains traces of organic chlorinated compounds, phosgene, carbon monoxide, and chlorine.

Its toxicity is caused mainly by the content of strongly acidic hydrochloric acid, but also due to thermal effects of reaction of zinc chloride with water. These effects cause lesions of the mucous membranes of the upper airways. Damage of the lower airways can manifest itself later as well, due to fine particles of zinc chloride and traces of phosgene. In high concentrations the smoke can be very dangerous when inhaled. Symptoms include dyspnea, retrosternal pain, hoarseness, stridor, lachrymation, cough, expectoration, and in some cases haemoptysis. Delayed pulmonary edema, cyanosis or bronchopneumonia may develop. The smoke and the spent canisters contain suspected carcinogens.

The prognosis for the casualties depends on the degree of the pulmonary damage. All exposed individuals should be kept under observation for 8 hours. Most affected individuals recover within several days, with some symptoms persisting for up to 1–2 weeks. Severe cases can suffer of reduced pulmonary function for some months, the worst cases developing marked dyspnoea and cyanosis leading to death.

Respirators are required for people coming into contact with the zinc chloride smoke.

Chlorosulfuric acid

Chlorosulfuric acid (CSA) is a heavy, strongly acidic liquid. When dispensed in air, it readily absorbs moisture and forms dense white fog of hydrochloric acid and sulfuric acid. In moderate concentrations it is highly irritating to eyes, nose, and skin.

When chlorosulfuric acid comes in contact with water, a strong exothermic reaction scatters the corrosive mixture in all directions. CSA is highly corrosive, so careful handling is required.

Low concentrations cause prickling sensations on the skin, but high concentrations or prolonged exposure to field concentrations can cause severe irritation of the eyes, skin, and respiratory tract, and mild cough and moderate contact dermatitis can result. Liquid CSA causes acid burns of skin and exposure of eyes can lead to severe eye damage.

Affected body parts should be washed with water and then with sodium bicarbonate solution. The burns are then treated like thermal burns. The skin burns heal readily, while cornea burns can result in residual scarring.

Respirators are required for any concentrations sufficient to cause any coughing, irritation of the eyes or prickling of the skin.

Titanium tetrachloride

Titanium tetrachloride (FM) is a colorless, non-flammable, corrosive liquid. In contact with damp air it hydrolyzes readily, resulting in a dense white smoke consisting of droplets of hydrochloric acid and particles of titanium oxychloride.

The titanium tetrachloride smoke is an irritant and unpleasant to breathe.

It is dispensed from aircraft to create vertical smoke curtains, and during World War II it was a favorite smoke generation agent on warships.

Goggles and a respirator should be worn when in contact with the smoke, full protective clothing should be worn when handling liquid FM. In direct contact with skin or eyes, liquid FM causes acid burns.


Red phosphorus and white phosphorus (WP) are red or waxy yellow or white substances. White phosphorus is pyrophoric - can be handled safely when under water, but in contact with air it spontaneously ignites. It is used as an incendiary. Both types of phosphorus are used for smoke generation, mostly in artillery shells, bombs, and grenades.

White phosphorus smoke is typically very hot and may cause burns on contact. Red phosphorus is less reactive, does not ignite spontaneously, and its smoke does not cause thermal burns - for this reason it is safer to handle, but cannot be used so easily as an incendiary.

Aerosol of burning phosphorus particles is an effective obscurant against thermal imaging systems. However, this effect is short-lived. After the phosphorus particles fully burn, the smoke reverts from emission to absorption. While very effective in the visible spectrum, cool phosphorus smoke has only low absorption and scattering in infrared wavelengths. Additives in the smoke that involve this part of the spectrum may be visible to thermal imagers or IR viewers. [6]


A coloured smoke grenade in use Training Marines 110517-M-DX861-330.jpg
A coloured smoke grenade in use

Various signalling purposes require the use of colored smoke. The smoke created is a fine mist of dye particles, generated by burning a mixture of one or more dyes with a low-temperature pyrotechnic composition, usually based on potassium chlorate and lactose (also known as milk sugar).

Colored smoke screen is also possible by adding a colored dye into the fog oil mixture. Typical white smoke screen uses titanium dioxide (or other white pigment), but other colors are possible by replacing titanium dioxide with another pigment. When the hot fog oil condenses on contact with air, the pigment particles are suspended along with the oil vapor. Early smoke screen experiments attempted the use of colored pigment, but found that titanium dioxide was the most light scattering particle known and therefore best for use in obscuring troops and naval vessels. Colored smoke became primarily used for signalling rather than obscuring. In today's [ when? ] military, smoke grenades are found to be non-cancer causing, unlike the 1950s AN-M8 model.

Sulfonic acid

The smoke generator on the Medium Mark B tank used sulfonic acid [7]



The first recorded instance [ citation needed ] of the tactical use of a smoke screen has been at the Battle of Macau by the Dutch. A barrel of damp gunpowder was fired into the wind so that the Dutch could land under the cover of smoke.

Land warfare

A smoke screen obstructing the view of the parachute landing at Nadzab Awm 128387 nadzab.jpg
A smoke screen obstructing the view of the parachute landing at Nadzab

Smoke screens are usually used by infantry to conceal their movement in areas of enemy fire. They can also be used by armoured fighting vehicles, such as tanks, to conceal a withdrawal. They have regularly been used since earliest times to disorient or drive off attackers.

A toxic variant of the smokescreen was used and devised by Frank Arthur Brock who used it during the Zeebrugge Raid on 23 April 1918, the British Royal Navy's attempt to neutralize the key Belgian port of Bruges-Zeebrugge.

For the crossing of the Dnieper river in October 1943, the Red Army laid a smoke screen 30 kilometres (19 mi) long. At the Anzio beachhead in 1944, US Chemical Corps troops maintained a 25 km (16 mi) "light haze" smokescreen around the harbour throughout daylight hours, for two months. The density of this screen was adjusted to be sufficient to prevent observation by German forward observers in the surrounding hills, yet not inhibit port operations.

In the Vietnam War "Smoke Ships" were introduced as part of a new Air Mobile Concept to protect crew and man on the ground from small arms fire. In 1964-65, the "Smoke Ship" was first employed by the 145th CAB using UH-1B. [8]

USS Lexington (CV-2) obscured by a smoke screen USS Lexington (CV-2) steams through smoke screen 1929.jpg
USS Lexington (CV-2) obscured by a smoke screen

There are a number of early examples of using incendiary weapons at sea, such as Greek fire, stinkpots, fire ships, and incendiaries on the decks of turtle ships, which also had the effect of creating smoke. The naval smoke screen is often said to have been proposed by Sir Thomas Cochrane in 1812, although Cochrane's proposal was as much an asphyxiant as an obscurant. It is not until the early twentieth century that there is clear evidence of deliberate use of large scale naval smokescreens as a major tactic.

During the American Civil War, the first smoke screen was used by the R.E. Lee , running the blockade and escaping the USS Iroquois.

The use of smoke screens was common in the naval battles of World War I and World War II.

See also

Related Research Articles

<span class="mw-page-title-main">Molotov cocktail</span> Type of improvised incendiary weapon

A Molotov cocktail is a hand thrown incendiary weapon constructed from a frangible container filled with flammable substances equipped with a fuse. In use, the fuse attached to the container is lit and the weapon is thrown, shattering on impact. This ignites the flammable substances contained in the bottle and spreads flames as the fuel burns.

<span class="mw-page-title-main">Phosphorus</span> Chemical element, symbol P and atomic number 15

Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Earth. It has a concentration in the Earth's crust of about one gram per kilogram. In minerals, phosphorus generally occurs as phosphate.

<span class="mw-page-title-main">Smoke</span> Mass of airborne particulates and gases

Smoke is a suspension of airborne particulates and gases emitted when a material undergoes combustion or pyrolysis, together with the quantity of air that is entrained or otherwise mixed into the mass. It is commonly an unwanted by-product of fires, but may also be used for pest control (fumigation), communication, defensive and offensive capabilities in the military, cooking, or smoking. It is used in rituals where incense, sage, or resin is burned to produce a smell for spiritual or magical purposes. It can also be a flavoring agent and preservative.

<span class="mw-page-title-main">Corrosive substance</span> Substance that will damage or destroy other substances by means of a chemical reaction

A corrosive substance is one that will damage or destroy other substances with which it comes into contact by means of a chemical reaction.

<span class="mw-page-title-main">Incendiary device</span> Weapons intended to start fires

Incendiary weapons, incendiary devices, incendiary munitions, or incendiary bombs are weapons designed to start fires or destroy sensitive equipment using fire, that use materials such as napalm, thermite, magnesium powder, chlorine trifluoride, or white phosphorus. Though colloquially often known as bombs, they are not explosives but in fact are designed to slow the process of chemical reactions and use ignition rather than detonation to start or maintain the reaction. Napalm for example, is petroleum especially thickened with certain chemicals into a 'gel' to slow, but not stop, combustion, releasing energy over a longer time than an explosive device. In the case of napalm, the gel adheres to surfaces and resists suppression.

<span class="mw-page-title-main">Potassium chlorate</span> Chemical compound

Potassium chlorate is a compound containing potassium, chlorine and oxygen, with the molecular formula KClO3. In its pure form, it is a white crystalline substance. After sodium chlorate, it is the second most common chlorate in industrial use. It is a strong oxidizing agent and its most important application is in safety matches. In other applications it is mostly obsolete and has been replaced by safer alternatives in recent decades. It has been used

<span class="mw-page-title-main">Smoke grenade</span> Signaling device

A smoke grenade is a canister-type grenade used as a signaling device, target or landing zone marking device, or as a screening device for unit movements.

<span class="mw-page-title-main">Flux (metallurgy)</span> Chemical used in metallurgy for cleaning or purifying molten metal

In metallurgy, a flux is a chemical cleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.

<span class="mw-page-title-main">White phosphorus munitions</span> Incendiary munition

White phosphorus munitions are weapons that use one of the common allotropes of the chemical element phosphorus. White phosphorus is used in smoke, illumination, and incendiary munitions, and is commonly the burning element of tracer ammunition. Other common names for white phosphorus munitions include WP and the slang terms Willie Pete and Willie Peter, which are derived from William Peter, the World War II phonetic alphabet rendering of the letters WP. White phosphorus is pyrophoric ; burns fiercely; and can ignite cloth, fuel, ammunition, and other combustibles.

Fallujah, The Hidden Massacre is a documentary film by Sigfrido Ranucci and Maurizio Torrealta which first aired on Italy's RAI state television network on November 8, 2005. The film documents the use of weapons that the documentary asserts are chemical weapons, particularly the use of incendiary bombs, and alleges indiscriminate use of violence against civilians and children by military forces of the United States of America in the city of Fallujah in Iraq during the Fallujah Offensive of November 2004.

The military of the United States has used many different types of hand grenades since its foundation. Presented on this page is a basic overview.

<span class="mw-page-title-main">Colored smoke</span> Type of smoke

Colored smoke is a kind of smoke created by an aerosol of small particles of a suitable pigment or dye.

A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.

<span class="mw-page-title-main">Hexachloroethane</span> Chemical compound

Hexachloroethane, also known as perchloroethane is the organochlorine compound with the chemical formula (CCl3)2. It is white solid at room temperature with a camphor-like odor. It has been used by the military in smoke compositions, such as base-eject smoke munitions.

<span class="mw-page-title-main">AN-M8 smoke grenade</span>

The AN-M8 HC Smoke Grenade designated as the Army/Navy Model 8 HC Smoke Grenade is a US military grenade used as a ground-to-ground obscuring or screening device or a ground-to-air signaling or target-marking device.

Ammonium perchlorate composite propellant (APCP) is a modern fuel used in solid-propellant rocket vehicles. It differs from many traditional solid rocket propellants such as black powder or zinc-sulfur, not only in chemical composition and overall performance but also by the nature of how it is processed. APCP is cast into shape, as opposed to powder pressing as with black powder. This provides manufacturing regularity and repeatability, which are necessary requirements for use in the aerospace industry.

<span class="mw-page-title-main">Flare (countermeasure)</span>

A flare or decoy flare is an aerial infrared countermeasure used by a plane or helicopter to counter an infrared homing ("heat-seeking") surface-to-air missile or air-to-air missile. Flares are commonly composed of a pyrotechnic composition based on magnesium or another hot-burning metal, with burning temperature equal to or hotter than engine exhaust. The aim is to make the infrared-guided missile seek out the heat signature from the flare rather than the aircraft's engines.

A smoke composition is a pyrotechnic composition designed primarily to generate smoke. Smoke compositions are used as obscurants or for generation of signaling smokes. Some are used as a payload of smoke bombs and smoke grenades.

The M34 White Phosphorus Smoke Grenade or "Willie Pete" was a smoke / incendiary grenade manufactured by Rocky Mountain Arsenal from the late 1950s and used by U.S. forces during the Vietnam War and was also used during the First Gulf War. The M34 WP Grenade replaced the World War II M15 WP grenade. The M34 could be fired from a rifle grenade launcher using M2-series grenade launching adapters, which the groove around the tapered base allowing the adapter arms to grasp it. The M15 could not be fired as a rifle grenade. The M34 had a segmented body to allow for a better hand grip and to identify it as a casualty-producing grenade, even though fragmentation was not its primary damage mechanism. The smooth-bodied M15 was sometimes assumed to be a burning-type smoke grenade, and this sometimes resulted in injuries.

<span class="mw-page-title-main">Triphosphorus pentanitride</span> Chemical compound

Triphosphorus pentanitride is an inorganic compound with the chemical formula P3N5. Containing only phosphorus and nitrogen, this material is classified as a binary nitride. While it has been investigated for various applications this has not led to any significant industrial uses. It is a white solid, although samples often appear colored owing to impurities.


  1. The Royal Navy at War (DVD). London: Imperial War Museum. 2005.
  2. "Smoke" (PDF). Treatment of Chemical Agent Casualties and Conventional Military Chemical Injuries. Department of Defense, Washington DC. 22 December 1995. Retrieved 27 May 2011.
  3. Hayman, Charles (10 February 2014). The Armed Forces of the United Kingdom 2014-2015. Pen and Sword. p. 119. ISBN   9781783463510 . Retrieved 14 April 2018 via Google Books.
  4. Archived 2007-02-25 at the Wayback Machine
  5. "". Archived from the original on 2000-01-07.
  6. "Infrared smoke (Arno Hahma)".
  7. Foss, Christopher F; McKenzie, Peter (1988). The Vickers Tanks From landships to Challenger. Patrick Stephens Limited. p. 30. ISBN   1-85260-141-8.
  8. "118thAHC".