Spirometra

Last updated

Spirometra
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Platyhelminthes
Class: Cestoda
Order: Diphyllobothriidea
Family: Diphyllobothriidae
Genus: Spirometra
Species
  • S. erinaceieuropaei
  • S. mansonoides
  • S. felis
  • S. decipiens
  • S. urichi
  • S. ranarum

Spirometra is a genus of pseudophyllid cestodes that reproduce in canines and felines, but can also cause pathology in humans if infected. [1] As an adult, this tapeworm lives in the small intestine of its definitive host and produces eggs that pass with the animal's feces. When the eggs reach water, the eggs hatch into coracidia which are eaten by copepods. The copepods are eaten by a second intermediate host to continue the life cycle. [1] Humans can become infected if they accidentally eat frog legs or fish with the plerocercoid stage encysted in the muscle. In humans, an infection of Spirometra is termed sparganosis. [1]

Contents

History

Spirometra infections were first described by Patrick Manson from China in 1882, and the first human case was reported by Charles Wardell Stiles from Florida in 1908. [2] Among this family of flatworms, there are a few species that show up most prominently in infections. One of these species is Spirometra erinaceieuropaei, which is the main cause of infections in Europe and Asia, and rarely but sometimes in North and South America. [3] The species that is the leading cause of infections in the Americas is Spirometra mansonoides. Some other species of Spirometra that have been diagnosed as causing infections are Spirometra felis, Spirometra decipiens, and Spirometra urichi. [3] The species Spirometra felis was found in domestic cats, as well as Spirometra decipiens. This same species, (Spirometra decipiens) was also discovered when scientists fed dogs larvae from frogs. [3] Spirometra decipiens has been identified in cats, dogs, and leopards. Finally, Spirometra urichi was identified through an infection of an ocelot in Trinidad. [3]

Life cycle

The adult worm of Spirometra species live in the small intestine of the definitive host—a dog, cat, raccoon, or other mammal—for up to 9 years, where they produce many eggs. [4] When the host defecates, the eggs leave the body in the feces and hatch when they reach fresh water. The eggs are then eaten by copepods, which are considered the first intermediate hosts. In the copepods, the eggs develop into procercoid larvae that live in the body cavity of the copepod until the life cycle can continue. The second intermediate hosts include fish, reptiles, or amphibians that consume the copepods while drinking water. [4] The larvae penetrate the intestinal tract of the second intermediate host, where they develop into the plerocercoid larvae and migrate and encyst into the subcutaneous tissues and muscles. After this step in the life cycle, the second intermediate host can get eaten by a larger fish or animal, but the plerocercoid larvae will not develop to a further developmental stage and will just re-encysts into the subcutaneous tissues and muscles of this new host. If this additional second intermediate host does not get eaten by a paratenic host, then the second intermediate host will eventually get eaten by a definitive host predator, typically a cat, and the cycle begins again. [1] Humans are accidental hosts in the cycle, becoming infected with the plerocercoid larvae by ingestion of the first or second intermediate hosts. The larvae migrate to the subcutaneous tissues in humans; however, no further development takes place and the human is not capable of transmitting the disease. [5]

Pathology

The pathology of a Spirometra infection depends on the ending location of the migrating sparganum. [6] The adult stage typically causes little to no pathology in the host. In paratenic hosts, plerocercoids migrate mainly to subcutaneous tissues from the small intestine, causing pain, edema, and inflammation. Sparganosis usually appears as slowly growing migratory subcutaneous nodules in the tissues of infected intermediate and paratenic hosts. The parasite can be found anywhere in the body including central nervous system. [6] Few humans have died from this kind of infection, called sparganosis. [1] For more information about the symptoms and pathology associated with sparganosis, see the disease page of sparganosis.

Diagnosis

To diagnose a Spirometra infection in humans, a serodiagnosis ELISA can be used to target anti-sparganum IgG antibodies within the blood. This diagnostic method is useful around 10–12 days post infection and is almost 100% effective at detecting the anti-sparganum antibodies in the 14–22 days post infection. [7] Serodiagnosis of sparganosis is a useful early detection method. Another method of diagnosing sparganosis is a biopsy of a subcutaneous sample. An early detection sera detects the cysteine protease of some species of Spirometra excretory-secretory proteins. [8] This option proves to be the best choice for early diagnostic methods in regards to early antigen identification. [8] Some imaging methods such as CT or MRI scans can be used to identify spargana larvae in other areas of the body, like the brain. [9]

When diagnosing an infection in animals, proglottids from the worm itself may have broken off and ended up in the feces along with eggs. [6] The proglottids can be microscopically identified as being in the Order of Pseudophyllidea because they have medial genital pores, but the actual genus of the worm could not be specifically identified from proglottids alone. [6] The specificity of the worm genus or species would require differentiation based upon the uterus and egg morphology.

Treatment and prevention

The best way to treat this condition in humans is with surgery, as most drug treatments are unsuccessful at getting rid of the larval stages. [1]

In animals, infections with Spirometra species can be treated with praziquantel at 30-35 mg/kg, PO of SQ, for 2 consecutive days. [10] Mebendazole at 11 mg/kg, PO, has also been successful. Taking an infected animal to a vet is the best option for ridding a pet of any developmental stage. [10]

Infection of humans may be prevented by avoiding eating under-cooked frog or fish, and avoiding drinking infected water. [2]

Related Research Articles

Toxocariasis is an illness of humans caused by the dog roundworm and, less frequently, the cat roundworm. These are the most common intestinal roundworms of dogs, coyotes, wolves and foxes and domestic cats, respectively. Humans are among the many "accidental" or paratenic hosts of these roundworms.

<i>Diphyllobothrium</i> Genus of flatworms

Diphyllobothrium is a genus of tapeworms which can cause diphyllobothriasis in humans through consumption of raw or undercooked fish. The principal species causing diphyllobothriasis is D. latum, known as the broad or fish tapeworm, or broad fish tapeworm. D. latum is a pseudophyllid cestode that infects fish and mammals. D. latum is native to Scandinavia, western Russia, and the Baltics, though it is now also present in North America, especially the Pacific Northwest. In Far East Russia, D. klebanovskii, having Pacific salmon as its second intermediate host, was identified.

Gnathostomiasis, also known as larva migrans profundus, is the human infection caused by the nematode Gnathostoma spinigerum and/or Gnathostoma hispidum, which infects vertebrates.

<i>Taenia solium</i> Species of Cestoda

Taenia solium, the pork tapeworm, belongs to the cyclophyllid cestode family Taeniidae. It is found throughout the world and is most common in countries where pork is eaten. It is a tapeworm that uses humans as its definitive host and pigs as the intermediate or secondary hosts. It is transmitted to pigs through human feces that contain the parasite eggs and contaminate their fodder. Pigs ingest the eggs, which develop into larvae, then into oncospheres, and ultimately into infective tapeworm cysts, called cysticercus. Humans acquire the cysts through consumption of uncooked or under-cooked pork and the cysts grow into an adult worms in the small intestine.

<i>Taenia</i> (tapeworm) Genus of flatworms

Taenia is the type genus of the Taeniidae family of tapeworms. It includes some important parasites of livestock. Members of the genus are responsible for taeniasis and cysticercosis in humans, which are types of helminthiasis belonging to the group of neglected tropical diseases. More than 100 species are recorded. They are morphologically characterized by a ribbon-like body composed of a series of segments called proglottids; hence the name Taenia. The anterior end of the body is the scolex. Some members of the genus Taenia have an armed scolex ; of the two major human parasites, Taenia saginata has an unarmed scolex, while Taenia solium has an armed scolex.

<i>Echinococcus granulosus</i> Species of flatworm

Echinococcus granulosus, also called the hydatid worm, hyper tape-worm or dog tapeworm, is a cyclophyllid cestode that dwells in the small intestine of canids as an adult, but which has important intermediate hosts such as livestock and humans, where it causes cystic echinococcosis, also known as hydatid disease. The adult tapeworm ranges in length from 3 mm to 6 mm and has three proglottids ("segments") when intact—an immature proglottid, mature proglottid and a gravid proglottid. The average number of eggs per gravid proglottid is 823. Like all cyclophyllideans, E. granulosus has four suckers on its scolex ("head"), and E. granulosus also has a rostellum with hooks. Several strains of E. granulosus have been identified, and all but two are noted to be infective in humans.

<i>Dipylidium caninum</i> Species of flatworm

Dipylidium caninum, also called the flea tapeworm, double-pored tapeworm, or cucumber tapeworm is a cyclophyllid cestode that infects organisms afflicted with fleas and canine chewing lice, including dogs, cats, and sometimes human pet-owners, especially children.

<i>Taenia pisiformis</i> Species of flatworm

Taenia pisiformis, commonly called the rabbit tapeworm, is an endoparasitic tapeworm which causes infection in lagomorphs, rodents, and carnivores. Adult T. pisiformis typically occur within the small intestines of the definitive hosts, the carnivores. Lagomorphs, the intermediate hosts, are infected by fecal contamination of grasses and other food sources by the definitive hosts. The larval stage is often referred to as Cysticercus pisiformis and is found on the livers and peritoneal cavities of the intermediate hosts. T. pisiformis can be found worldwide.

<span class="mw-page-title-main">Eucestoda</span> Subclass of flatworms

Eucestoda, commonly referred to as tapeworms, is the larger of the two subclasses of flatworms in the class Cestoda. Larvae have six posterior hooks on the scolex (head), in contrast to the ten-hooked Cestodaria. All tapeworms are endoparasites of vertebrates, living in the digestive tract or related ducts. Examples are the pork tapeworm with a human definitive host, and pigs as the secondary host, and Moniezia expansa, the definitive hosts of which are ruminants.

Spirometra erinaceieuropaei is a parasitic tapeworm that infects domestic animals and humans. The medical term for this infection in humans and other animals is sparganosis. Morphologically, these worms are similar to other worms in the genus Spirometra. They have a long body consisting of three sections: the scolex, the neck, and the strobilia. They have a complex life cycle that consists of three hosts, and can live in varying environments and bodily tissues. Humans can contract this parasite in three main ways. Historically, humans are considered a paratenic host; however, the first case of an adult S. erinaceieuropaei infection in humans was reported in 2017. Spirometra tapeworms exist worldwide and infection is common in animals, but S. erinaceieuropaei infections are rare in humans. Treatment for infection typically includes surgical removal and anti-worm medication.

Sparganosis is a parasitic infection caused by the plerocercoid larvae of the genus Spirometra including S. mansoni, S. ranarum, S. mansonoides and S. erinacei. It was first described by Patrick Manson in 1882, and the first human case was reported by Charles Wardell Stiles from Florida in 1908. The infection is transmitted by ingestion of contaminated water, ingestion of a second intermediate host such as a frog or snake, or contact between a second intermediate host and an open wound or mucous membrane. Humans are the accidental hosts in the life cycle, while dogs, cats, and other mammals are definitive hosts. Copepods are the first intermediate hosts, and various amphibians and reptiles are second intermediate hosts.

<i>Toxocara canis</i> Species of roundworm

Toxocara canis is a worldwide-distributed helminth parasite that primarily infects dogs and other canids, but can also infect other animals including humans. The name is derived from the Greek word "toxon," meaning bow or quiver, and the Latin word "caro," meaning flesh. T. canis live in the small intestine of the definitive host. This parasite is very common in puppies and somewhat less common in adult dogs. In adult dogs, infection is usually asymptomatic but may be characterized by diarrhea. By contrast, untreated infection with Toxocara canis can be fatal in puppies, causing diarrhea, vomiting, pneumonia, enlarged abdomen, flatulence, poor growth rate, and other complications.

<span class="mw-page-title-main">Cestoda</span> Class of flatworms

Cestoda is a class of parasitic worms in the flatworm phylum (Platyhelminthes). Most of the species—and the best-known—are those in the subclass Eucestoda; they are ribbon-like worms as adults, known as tapeworms. Their bodies consist of many similar units known as proglottids—essentially packages of eggs which are regularly shed into the environment to infect other organisms. Species of the other subclass, Cestodaria, are mainly fish infecting parasites.

Diphyllobothrium mansonoides is a species of tapeworm (cestodes) that is endemic to North America. Infection with D. mansonoides in humans can result in sparganosis. Justus F. Mueller first reported this organism in 1935. D. mansonoides is similar to D. latum and Spirometra erinacei. When the organism was discovered, scientist did not know if D. mansonoides and S. erinacei were separate species. PCR analysis of the two worms has shown the two to be separate but closely related organisms.

<i>Baylisascaris procyonis</i> Species of roundworm

Baylisascaris procyonis, also known by the common name raccoon roundworm, is a roundworm nematode, found ubiquitously in raccoons, the definitive hosts. It is named after H. A. Baylis, who studied them in the 1920s–30s, and Greek askaris. Baylisascaris larvae in paratenic hosts can migrate, causing larva migrans. Baylisascariasis as the zoonotic infection of humans is rare, though extremely dangerous due to the ability of the parasite's larvae to migrate into brain tissue and cause damage. Concern for human infection has been increasing over the years due to urbanization of rural areas resulting in the increase in proximity and potential human interaction with raccoons.

Gnathostoma hispidum is a nematode (roundworm) that infects many vertebrate animals including humans. Infection of Gnathostoma hispidum, like many species of Gnathostoma causes the disease gnathostomiasis due to the migration of immature worms in the tissues.

<span class="mw-page-title-main">Coenurosis in humans</span> Medical condition

Coenurosis is a parasitic infection that results when humans ingest the eggs of dog tapeworm species Taenia multiceps, T. serialis, T. brauni, or T. glomerata.

<i>Taenia hydatigena</i> Species of flatworm

Taenia hydatigena is one of the adult forms of the canine and feline tapeworm. This infection has a worldwide geographic distribution. Humans with taeniasis can infect other humans or animal intermediate hosts by eggs and gravid proglottids passed in the feces.

<i>Diphyllobothrium dendriticum</i> Species of Cestoda

Diphyllobothrium dendriticum is a large pseudophyllid cestode of the family Diphyllobothriidae.

<span class="mw-page-title-main">Cat worm infections</span> Worm infections in cats

Cat worm infections, the infection of cats (Felidae) with parasitic worms, occur frequently. Most worm species occur worldwide in both domestic and other cats, but there are regional, species and lifestyle differences in the frequency of infestation. According to the classification of the corresponding parasites in the zoological system, infections can be divided into those caused by nematode and flatworms - in the case of the latter, mainly cestoda and trematoda - while other strains are of no veterinary significance. While threadworms usually do not require an intermediate host for their reproduction, the development cycle of flatworms always proceeds via alternate hosts.

References

  1. 1 2 3 4 5 6 "CDC - DPDx - Sparganosis". www.cdc.gov. 2017-12-30. Retrieved 2018-04-24.
  2. 1 2 Read CP (February 1952). "Human sparganosis in South Texas". The Journal of Parasitology. 38 (1): 29–31. doi:10.2307/3274168. JSTOR   3274168. PMID   14928149.
  3. 1 2 3 4 "Spirometra species | American Association of Veterinary Parasitologists". www.aavp.org. Archived from the original on 2018-04-24. Retrieved 2018-04-24.
  4. 1 2 "Spirometra - Details - Encyclopedia of Life". Encyclopedia of Life. Retrieved 2018-04-24.
  5. "GIDEON Sign In". web.gideononline.com. Retrieved 2018-04-24.
  6. 1 2 3 4 "Sparganosis: A Zoonotic Cestodiasis". UGA College of Veterinary Medicine. July 31, 2013. Archived from the original on April 24, 2018. Retrieved April 24, 2018.
  7. Hu DD, Cui J, Wang L, Liu LN, Wei T, Wang ZQ (July 2013). "Immunoproteomic Analysis of the Excretory-Secretory Proteins from Spirometra mansoni Sparganum". Iranian Journal of Parasitology. 8 (3): 408–16. PMC   3887242 . PMID   24454434.
  8. 1 2 Liu LN, Zhang X, Jiang P, Liu RD, Zhou J, He RZ, Cui J, Wang ZQ (February 2015). "Serodiagnosis of sparganosis by ELISA using recombinant cysteine protease of Spirometra erinaceieuropaei spargana". Parasitology Research. 114 (2): 753–7. doi:10.1007/s00436-014-4270-5. PMID   25532486. S2CID   16815760.
  9. "Tropical Medicine Central Resource". www.isradiology.org. Archived from the original on 2017-03-02. Retrieved 2018-04-24.
  10. 1 2 "Tapeworms in Dogs and Cats - Digestive System". Merck Veterinary Manual. Retrieved 2018-04-24.