Sparganosis

Last updated
Sparganosis
Specialty Infectious diseases   OOjs UI icon edit-ltr-progressive.svg

Sparganosis is a parasitic infection caused by the plerocercoid larvae of the genus Spirometra including S. mansoni, S. ranarum, S. mansonoides and S. erinacei. [1] [2] It was first described by Patrick Manson in 1882, [3] and the first human case was reported by Charles Wardell Stiles from Florida in 1908. [4] The infection is transmitted by ingestion of contaminated water, ingestion of a second intermediate host such as a frog or snake, or contact between a second intermediate host and an open wound or mucous membrane. [5] [6] Humans are the accidental hosts in the life cycle, while dogs, cats, and other mammals are definitive hosts. Copepods (freshwater crustaceans) are the first intermediate hosts, and various amphibians and reptiles are second intermediate hosts. [7]

Contents

Once a human becomes infected, the plerocercoid larvae migrate to a subcutaneous location, where they typically develop into a painful nodule. [8] Migration to the brain results in cerebral sparganosis, while migration to the eyes results in ocular sparganosis. [1] [9] Sparganosis is most prevalent in Eastern Asia, although cases have been described in countries throughout the world. In total, approximately 300 cases have been described in the literature up to 2003. [8] [10] Diagnosis is typically not made until the sparganum larva has been surgically removed. [8] Praziquantel is the drug of choice, although its efficacy is unknown and surgical removal of the sparganum is generally the best treatment. Public health interventions should focus on water and dietary sanitation, as well as education about the disease in rural areas and discouragement of the use of poultices.

Symptoms

Clinical presentation of sparganosis most often occurs after the larvae have migrated to a subcutaneous location. The destination of the larvae is often a tissue or muscle in the chest, abdominal wall, extremities, or scrotum, although other sites include the eyes, brain, urinary tract, pleura, pericardium, and spinal canal. The early stages of disease in humans are often asymptomatic, but the spargana typically cause a painful inflammatory reaction in the tissues surrounding the subcutaneous site as they grow. Discrete subcutaneous nodules develop that may appear and disappear over a period of time. The nodules usually itch, swell, turn red, and migrate, and are often accompanied by painful edema. [7] [8] Seizures, hemiparesis, and headaches are also common symptoms of sparganosis, especially cerebral sparganosis, and eosinophilia is a common sign. [1] [8] Clinical symptoms also vary according to the location of the sparganum; possible symptoms include elephantiasis from location in the lymph channels, peritonitis from location in the intestinal perforation, and brain abscesses from location in the brain. [7] In genital sparganosis, subcutaneous nodules are present in the groin, labia, or scrotum and may appear tumor-like. [8]

Ocular sparganosis a particularly well-described type of sparganosis. Early signs of the ocular form include eye pain, epiphora (excessive watering of the eye), and/or ptosis (drooping of the upper eyelid). Other signs include periorbital edema and/or edematous swelling that resembles Romana's sign in Chagas disease, lacrimation, orbital cellulitis, exophthalmos (protrusion of the eyeball), and/or an exposed cornea ulcer. [7] [9] The most common sign at presentation is a mass lesion in the eye. If untreated, ocular sparganosis can lead to blindness. [11]

In one case of brain infestation by Spirometra erinaceieuropaei , a man sought treatment for headaches, seizures, memory flashbacks and strange smells. Magnetic resonance imaging (MRI) scans showed a cluster of rings, initially in the right medial temporal lobe, but moving over time to the other side of the brain. The cause was not determined for four years; ultimately a biopsy was performed and a 1 cm-long tapeworm was found and removed. The patient continued to have symptoms. [12]

Transmission

The parasite is transmitted to humans in three different ways. First, humans may acquire the infection by drinking water that is contaminated with copepods housing Spirometra larvae. [5] Second, humans may acquire the infection by consuming the raw flesh of one of the second intermediate hosts, such as frogs or snakes. [7] For example, humans consume raw snakes or tadpoles for medicinal purposes in some Asian cultures; if the snakes or tadpoles are infected, the larvae may be transmitted to humans. Third, humans may acquire the infection by placing raw poultices of the second intermediate hosts on open wounds, lesions, or the eyes for medicinal or ritualistic reasons. If the poultice is infected with plerocercoid larvae, the human may become infected. [1] [9] According to Zunt et al., human infection most often occurs following ingestion of infected raw snake, frog, or pig, although contact with infected flesh of an intermediate host can also cause infection. The high prevalence in Korea may be explained by the ingestion of dog meat. In the Western hemisphere, the most common cause of infection is drinking contaminated water. [9]

Hosts, reservoirs, and vectors

Definitive hosts of Spirometra include dogs, cats, birds, and wild carnivores, while humans are accidental hosts. [1] [5] [9] First intermediate hosts include copepods and other fresh-water crustaceans, while second intermediate hosts include birds, reptiles, and amphibians. The intermediate hosts are also the reservoirs of Spirometra. There are no vectors of Spirometra. [8]

Incubation period

The incubation period of Spirometra is 20 days to 3 years. [8]

Morphology

The sparganum larvae are white, wrinkled, and ribbon-shaped. They range from a few millimeters in length to several centimeters. The anterior end can invaginate and bears suggestions of the sucking grooves that are present in the scolex of the mature worm. [1] The absence of a scolex or protoscolex in Spirometra is a key difference in differentiating between Taenia solium and Spirometra. [13] The worm's body is also characterized by a stromal network of smooth muscle. In general, plerocercoids in the East (S. mansoni) are described as larger and more delicate than those in the West. [14]

The eggs of S. mansonoides provide an example of the general morphological characteristics of Spirometra eggs. S. mansonoides eggs resemble the eggs of D. latum, with some specific differences. S. mansonoides eggs measure 57-66 µm by 33-37 µm, which is smaller than the eggs of D. latum. The eggs of S. mansonoides are also ellipsoidal and have a conical, prominent operculum. [15]

Life cycle

The adult Spirometra live in the small intestine of the definitive host—a dog, cat, raccoon, or other mammal—for up to 9 years, where they produce many eggs. [7] [8] [14] When the host defecates, the unembryonated eggs leave the body in the feces and hatch when they reach fresh water. The eggs are eaten by copepods (crustaceans of the genus Cyclops), which are the first intermediate hosts. [8] In the copepods, the eggs develop into procercoid larvae that live in the body cavity. [7] The second intermediate hosts include fish, reptiles, or amphibians that consume the copepods. The larvae penetrate the intestinal tract of the second intermediate host, where they become plerocercoid larvae and proliferate to the subcutaneous tissues and muscles. The second intermediate host is eventually eaten by a definitive host predator, such as a dog, and the cycle begins again. [9] [16] Humans are accidental hosts in the cycle, becoming infected with the plerocercoid larvae by contact with or ingestion of the first or second intermediate hosts. [7] The larvae migrate to the subcutaneous tissues in humans; however, no development takes place and the human is not capable of transmitting the disease. In S. proliferum, many larvae, rather than just a few, proliferate throughout the subcutaneous tissues of humans. [8]

Diagnosis

Sparganosis is typically diagnosed following surgical removal of the worms, although the infection may also be diagnosed by identification of eosinophilia or identification of the parasite in a tissue specimen. If such biopsy and excision procedures are not feasible, the antisparganum ELISA test may be used. [9] In theory, a pre-operative diagnosis could be made by identification of exposure history and a painful, migratory, subcutaneous nodule. Sparganosis usually presents as a single nodule, while other cestode infections such as cysticercosis typically present as multiple nodules. Preoperative diagnosis, however, is rare. [1] [13]

CT and MRI scans are especially useful for diagnosis of cerebral sparganosis, as they reveal lesions in the brain. Through a retrospective analysis of 25 cases of cerebral sparganosis from 2000 to 2006, Song et al. found a number of characteristic signs that could be used in the future to diagnose cerebral sparganosis without performing an excision or tissue biopsy. The most characteristic finding was the "tunnel sign" on MRI images, showing the migrating track of the worm, [17] while the most common finding was multiple conglomerated ring-shaped enhancements, seen as bead-shaped, usually with 3 to 6 rings. These findings led Song et al. to suggest that clinical history, ELISA, and either MRI or CT scans could be sufficient to make a sparganosis diagnosis. These lesions, however, are sometimes mistaken for tuberculosis lesions. [18] In one case cerebral sparganosis was not diagnosed for four years, during which scans showed a cluster of rings moving from the right to the left side of the brain; ultimately the worm was found on biopsy. [12]

Prevention

Because sparganosis is a rare infection, public health strategies have not made its prevention a priority. Public health strategies focusing on providing basic access to clean water may help to reduce future sparganosis infections. In their retrospective study of 25 cases of cerebral sparganosis, Song et al. found that 12 patients (48%) had eaten raw or uncooked frog or snake that was infected with sparganum, 5 patients (20%) had applied an animal's flesh as a poultice to an open wound, 4 patients had drunk contaminated water, and the cause of infection was not known for 4 patients. As a result of these findings, Song et al. conclude that health education about sparganosis and the importance of food sanitation should be implemented in all rural endemic areas. [18] It has been recommended that water consumed in endemic areas should be boiled or treated to prevent ingestion of Cyclops or Spirometra larvae. Especially in areas where ponds or ditches provide potential habitats for infected copepods, public health strategies should include education campaigns about how to identify drinking water that could potentially be infected. Strategies should warn people against ingesting the raw flesh of the intermediate hosts, such as snakes and frogs, and against using them as poultices. [1]

Management

One treatment for sparganosis is praziquantel, administered at a dose of 120 to 150 mg/kg body weight over 2 days; however, praziquantel has had limited success. In general, infestation by one or a few sparganum larvae is often best treated by surgical removal. [1] [9]

DNA analysis of rare worms removed surgically can provide genome information to identify and characterise each parasite; treatments for the more common tapeworms can be cross-checked to see whether they are also likely to be effective against the species in question. [12]

Epidemiology

Sparganosis is endemic or potentially endemic in 48 countries, and although rare, cases have been described in Asia, Africa, Australia, South America, and the United States. [1] [8] [9] The majority of cases occur in Southeast Asia and Eastern Africa. [8] Ocular sparganosis is especially prevalent in China and Vietnam. [1] The highest numbers of cases occur in Korea and Japan. [9] As of 2003, only seven cases of sparganosis had ever been described in Europe. [10]

History of discovery

Diesing first named the Sparganum genus of cestodes in 1854. Patrick Manson first reported sparganosis and the species Sparganum mansoni in China in 1882, while making the post-mortem examination of a man in Amoy, China. [6] [19] The first case of sparganosis in the United States was reported by Stiles in 1908; this was a case of infection by Spirometra proliferum. Mueller first described Spirometra mansonoides in the United States in 1935. [14]

Related Research Articles

<span class="mw-page-title-main">Schistosomiasis</span> Human disease caused by parasitic worms called schistosomes

Schistosomiasis, also known as snail fever, bilharzia, and Katayama fever, is a disease caused by parasitic flatworms called schistosomes. The urinary tract or the intestines may be infected. Symptoms include abdominal pain, diarrhea, bloody stool, or blood in the urine. Those who have been infected for a long time may experience liver damage, kidney failure, infertility, or bladder cancer. In children, it may cause poor growth and learning difficulty.

Toxocariasis is an illness of humans caused by the dog roundworm and, less frequently, the cat roundworm. These are the most common intestinal roundworms of dogs, coyotes, wolves and foxes and domestic cats, respectively. Humans are among the many "accidental" or paratenic hosts of these roundworms.

<i>Diphyllobothrium</i> Genus of flatworms

Diphyllobothrium is a genus of tapeworms which can cause diphyllobothriasis in humans through consumption of raw or undercooked fish. The principal species causing diphyllobothriasis is D. latum, known as the broad or fish tapeworm, or broad fish tapeworm. D. latum is a pseudophyllid cestode that infects fish and mammals. D. latum is native to Scandinavia, western Russia, and the Baltics, though it is now also present in North America, especially the Pacific Northwest. In Far East Russia, D. klebanovskii, having Pacific salmon as its second intermediate host, was identified.

Hymenolepiasis is infestation by one of two species of tapeworm: Hymenolepis nana or H. diminuta. Alternative names are dwarf tapeworm infection and rat tapeworm infection. The disease is a type of helminthiasis which is classified as a neglected tropical disease.

Gnathostomiasis, also known as larva migrans profundus, is the human infection caused by the nematode Gnathostoma spinigerum and/or Gnathostoma hispidum, which infects vertebrates.

<span class="mw-page-title-main">Pseudophyllidea</span> Order of flatworms

Pseudophyllid cestodes are tapeworms with multiple "segments" (proglottids) and two bothria or "sucking grooves" as adults. Proglottids are identifiably pseudophyllid as the genital pore and uterine pore are located on the mid-ventral surface, and the ovary is bilobed ("dumbbell-shaped").

Spirometra is a genus of pseudophyllid cestodes that reproduce in canines and felines, but can also cause pathology in humans if infected. As an adult, this tapeworm lives in the small intestine of its definitive host and produces eggs that pass with the animal's feces. When the eggs reach water, the eggs hatch into coracidia which are eaten by copepods. The copepods are eaten by a second intermediate host to continue the life cycle. Humans can become infected if they accidentally eat frog legs or fish with the plerocercoid stage encysted in the muscle. In humans, an infection of Spirometra is termed sparganosis.

<span class="mw-page-title-main">Toxocaridae</span> Family of roundworms

The Toxocaridae are a zoonotic family of parasitic nematodes that infect canids and felids and which cause toxocariasis in humans. The worms are unable to reproduce in humans.

<span class="mw-page-title-main">Paragonimiasis</span> Medical condition

Paragonimiasis is a food-borne parasitic disease caused by several species of lung flukes belonging to genus Paragonimus. Infection is acquired by eating crustaceans such as crabs and crayfishes which host the infective forms called metacercariae, or by eating raw or undercooked meat of mammals harboring the metacercariae from crustaceans.

<span class="mw-page-title-main">Eucestoda</span> Subclass of flatworms

Eucestoda, commonly referred to as tapeworms, is the larger of the two subclasses of flatworms in the class Cestoda. Larvae have six posterior hooks on the scolex (head), in contrast to the ten-hooked Cestodaria. All tapeworms are endoparasites of vertebrates, living in the digestive tract or related ducts. Examples are the pork tapeworm with a human definitive host, and pigs as the secondary host, and Moniezia expansa, the definitive hosts of which are ruminants.

Spirometra erinaceieuropaei is a parasitic tapeworm that infects domestic animals and humans. The medical term for this infection in humans and other animals is sparganosis. Morphologically, these worms are similar to other worms in the genus Spirometra. They have a long body consisting of three sections: the scolex, the neck, and the strobilia. They have a complex life cycle that consists of three hosts, and can live in varying environments and bodily tissues. Humans can contract this parasite in three main ways. Historically, humans are considered a paratenic host; however, the first case of an adult S. erinaceieuropaei infection in humans was reported in 2017. Spirometra tapeworms exist worldwide and infection is common in animals, but S. erinaceieuropaei infections are rare in humans. Treatment for infection typically includes surgical removal and anti-worm medication.

<i>Dracunculus medinensis</i> Species of parasitic worm

Dracunculus medinensis is a nematode that causes dracunculiasis, also known as guinea worm disease. The disease is caused by the female which, at around 80 centimetres in length, is among the longest nematodes infecting humans. In contrast, the longest recorded male Guinea worm is only 4 cm.

Muelleries capillaris, also known as the hair or goat lungworm, is one of the most economically important nematodes of small ruminants. Although normally non-pathogenic in sheep, the parasite causes a disease condition called muelleriosis in goats. Sheep and goats commonly become infected after accidentally ingesting M. capillaris infected snails or slugs, and the parasite produces eggs in the lungs of its host, causing life-threatening bronchopneumonia in serious cases.

Diphyllobothrium mansonoides is a species of tapeworm (cestodes) that is endemic to North America. Infection with D. mansonoides in humans can result in sparganosis. Justus F. Mueller first reported this organism in 1935. D. mansonoides is similar to D. latum and Spirometra erinacei. When the organism was discovered, scientist did not know if D. mansonoides and S. erinacei were separate species. PCR analysis of the two worms has shown the two to be separate but closely related organisms.

<i>Baylisascaris procyonis</i> Species of roundworm

Baylisascaris procyonis, also known by the common name of raccoon roundworm, is a roundworm nematode, found ubiquitously in raccoons, the definitive hosts. It is named after H. A. Baylis, who studied them in the 1920s–30s, and Greek askaris. Baylisascaris larvae in paratenic hosts can migrate, causing visceral larva migrans (VLM). Baylisascariasis as the zoonotic infection of humans is rare, though extremely dangerous due to the ability of the parasite's larvae to migrate into brain tissue and cause damage. Concern for human infection has been increasing over the years due to urbanization of rural areas resulting in the increase in proximity and potential human interaction with raccoons.

Gnathostoma hispidum is a nematode (roundworm) that infects many vertebrate animals including humans. Infection of Gnathostoma hispidum, like many species of Gnathostoma causes the disease gnathostomiasis due to the migration of immature worms in the tissues.

<span class="mw-page-title-main">Coenurosis in humans</span> Medical condition

Coenurosis is a parasitic infection that results when humans ingest the eggs of dog tapeworm species Taenia multiceps, T. serialis, T. brauni, or T. glomerata.

<span class="mw-page-title-main">Coenurosis</span> Parasitic disease

Coenurosis, also known as caenurosis, coenuriasis, gid or sturdy, is a parasitic infection that develops in the intermediate hosts of some tapeworm species. It is caused by the coenurus, the larval stage of these tapeworms. The disease occurs mainly in sheep and other ungulates, but it can also occur in humans by accidental ingestion of tapeworm eggs.

Taenia serialis, also known as a canid tapeworm, is found within canines such as foxes and dogs. Adult T. serialis are parasites of carnivores, particularly dogs, with herbivorous lagomorph mammals such as rabbits and hares, serving as intermediate hosts. In definitive hosts, T. serialis is acquired by eating tissues from a variety of intermediate hosts. Accidental infection of humans though, can occur when eggs are ingested from food or water contaminated with dog feces and the human then becomes the T. serialis intermediate host.

<i>Taenia hydatigena</i> Species of flatworm

Taenia hydatigena is one of the adult forms of the canine and feline tapeworm. This infection has a worldwide geographic distribution. Humans with taeniasis can infect other humans or animal intermediate hosts by eggs and gravid proglottids passed in the feces.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 John, D.T. and Petri, W.A. Markell and Voge's Medical Parasitology. 9th edition. St. Louis: Saunders Elsevier, 2006.
  2. "CDC - DPDX - Sparganosis". 22 January 2019.
  3. Lescano, Andres G; Zunt, Joseph (2013). Other cestodes: sparganosis, coenurosis and Taenia crassiceps cysticercosis. Handbook of Clinical Neurology. Vol. 114. pp. 335–345. doi:10.1016/B978-0-444-53490-3.00027-3. ISBN   9780444534903. PMC   4080899 . PMID   23829923.
  4. Read, Clark P. (1952). "Human Sparganosis in South Texas". The Journal of Parasitology. 38 (1): 29–31. doi:10.2307/3274168. JSTOR   3274168. PMID   14928149.
  5. 1 2 3 Hughes A.J., Biggs B.A. (2001). "Parasitic worms of the central nervous system: an Australian perspective". Internal Medicine Journal. 32 (11): 541–543. doi:10.1046/j.1445-5994.2002.00265.x. PMID   12412938. S2CID   45715716.
  6. 1 2 Manson, P., Manson-Bahr, P., and Wilcocks, C. Manson's Tropical Diseases: A Manual of the Diseases. New York: William Wood and Company, 1921.
  7. 1 2 3 4 5 6 7 8 Garcia, L., and Bruckner, D.A. Diagnostic Medical Parasitology. Herndon, VA: ASM Press, 2007.
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 GIDEON, "Sparganosis." Date viewed February 26, 2009
  9. 1 2 3 4 5 6 7 8 9 10 Walker M.D., Zunt (2005). "Neuroparasitic Infections: Cestodes, Trematodes, and Protozoans". Seminars in Neurology. 25 (3): 262–277. doi:10.1055/s-2005-917663. PMC   2683840 . PMID   16170739.
  10. 1 2 Pampliglione S.; Fioravanti M.L.; Rivasi F. (2003). "Human sparganosis in Italy. Case report and review of the European cases". APMIS. 111 (2): 349–54. doi:10.1034/j.1600-0463.2003.1110208.x. PMID   12716392. S2CID   35038609.
  11. Yang J.W.; Lee J.H.; Kang M.S. (2007). "A Case of Ocular Sparganosis". Korean Journal of Ophthalmology. 21 (1): 48–50. doi:10.3341/kjo.2007.21.1.48. PMC   2629689 . PMID   17460433.
  12. 1 2 3 The Guardian newspaper: Man's headaches due to tapeworm living in his brain for four years, 21 November 2014
  13. 1 2 Iwatani K.; Kubota I.; Hirotsu Y.; et al. (2006). "Sparganum mansoni parasitic infection in the lung showing a nodule". Pathology International. 56 (11): 674–7. doi:10.1111/j.1440-1827.2006.02028.x. PMID   17040290. S2CID   38237947.
  14. 1 2 3 Mueller J.F.; Coulston F. "Experimental human infection with the sparganum larva of Spirometra mansonoides". The American Journal of Tropical Medicine and Hygiene. 21 (3): 399.
  15. Ash, L.R. and Orihel, T.C.. Atlas of Human Parasitology. Chicago: ASCP Press, 1990.
  16. "CDC: Sparganosis, Date viewed February 25, 2009". Archived from the original on March 5, 2013. Retrieved February 27, 2009.
  17. Rengarajan, S; Nanjegowda, N; Bhat, D; Mahadevan, A; Sampath, S; Krishna, S (2008). "Cerebral sparganosis: a diagnostic challenge". British Journal of Neurosurgery. 22 (6): 784–786. doi:10.1080/02688690802088073. PMID   18661311. S2CID   43485356.
  18. 1 2 Song, T.; Wang, W.-S.; Zhou, B.-R.; Mai, W.-W.; Li, Z.-Z.; Guo, H.-C.; Zhou, F. (1 October 2007). "CT and MR Characteristics of Cerebral Sparganosis". American Journal of Neuroradiology. 28 (9): 1700–1705. doi: 10.3174/ajnr.A0659 . PMC   8134205 . PMID   17885230.
  19. Fantahm, H.B., and Stephens, J.W.W., and Theobald, F.V. The Animal Parasites of Man. New York: William Wood and Company, 1916.