Squircle

Last updated

Squircle centred on the origin (a = b = 0) with minor radius r = 1: x + y = 1 Superellipse chamfered square.svg
Squircle centred on the origin (a = b = 0) with minor radius r =1: x + y = 1

A squircle is a shape intermediate between a square and a circle. There are at least two definitions of "squircle" in use, the most common of which is based on the superellipse. The word "squircle" is a portmanteau of the words "square" and "circle". Squircles have been applied in design and optics.

Contents

Superellipse-based squircle

In a Cartesian coordinate system, the superellipse is defined by the equation where ra and rb are the semi-major and semi-minor axes, a and b are the x and y coordinates of the centre of the ellipse, and n is a positive number. The squircle is then defined as the superellipse with ra = rb and n = 4. Its equation is: [1] where r is the minor radius of the squircle, and the major radius is the geometric average between square and circle. Compare this to the equation of a circle. When the squircle is centred at the origin, then a = b = 0, and it is called Lamé's special quartic.

The area inside the squircle can be expressed in terms of the gamma function Γ as [1] where r is the minor radius of the squircle, and is the lemniscate constant.

p-norm notation

In terms of the p-norm ‖ · ‖p on R2, the squircle can be expressed as: where p = 4, xc = (a, b) is the vector denoting the centre of the squircle, and x = (x, y). Effectively, this is still a "circle" of points at a distance r from the centre, but distance is defined differently. For comparison, the usual circle is the case p = 2, whereas the square is given by the p → ∞ case (the supremum norm), and a rotated square is given by p = 1 (the taxicab norm). This allows a straightforward generalization to a spherical cube, or sphube, in R3, or hypersphube in higher dimensions. [2]

Fernández-Guasti squircle

Another squircle comes from work in optics. [3] [4] It may be called the Fernández-Guasti squircle, after one of its authors, to distinguish it from the superellipse-related squircle above. [2] This kind of squircle, centred at the origin, can be defined by the equation: where r is the minor radius of the squircle, s is the squareness parameter, and x and y are in the interval [r, r]. If s = 0, the equation is a circle; if s = 1, this is a square. This equation allows a smooth parametrization of the transition to a square from a circle, without involving infinity.

Periodic squircle

Another type of squircle arises from trigonometry. [5] This type of squircle is periodic in R2 and has the equation

where r is the minor radius of the squircle, s is the squareness parameter, and x and y are in the interval [−r, r]. As s approaches 0 in the limit, the equation becomes a circle. When s = 1, the equation is a square. This shape can be visualized using online graphing calculators such as Desmos. [6]

Similar shapes

A squircle (
@media screen{html.skin-theme-clientpref-night .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}
blue) compared with a rounded square (
red). (Larger image) Squircle rounded square.svg
A squircle (blue) compared with a rounded square (red). (Larger image)

A shape similar to a squircle, called a rounded square, may be generated by separating four quarters of a circle and connecting their loose ends with straight lines, or by separating the four sides of a square and connecting them with quarter-circles. Such a shape is very similar but not identical to the squircle. Although constructing a rounded square may be conceptually and physically simpler, the squircle has a simpler equation and can be generalised much more easily. One consequence of this is that the squircle and other superellipses can be scaled up or down quite easily. This is useful where, for example, one wishes to create nested squircles.

Various forms of a truncated circle Truncated circles.svg
Various forms of a truncated circle

Another similar shape is a truncated circle, the boundary of the intersection of the regions enclosed by a square and by a concentric circle whose diameter is both greater than the length of the side of the square and less than the length of the diagonal of the square (so that each figure has interior points that are not in the interior of the other). Such shapes lack the tangent continuity possessed by both superellipses and rounded squares.

A rounded cube can be defined in terms of superellipsoids.

Uses

Squircles are useful in optics. If light is passed through a two-dimensional square aperture, the central spot in the diffraction pattern can be closely modelled by a squircle or supercircle. If a rectangular aperture is used, the spot can be approximated by a superellipse. [4]

Squircles have also been used to construct dinner plates. A squircular plate has a larger area (and can thus hold more food) than a circular one with the same radius, but still occupies the same amount of space in a rectangular or square cupboard. [7]

Many Nokia phone models have been designed with a squircle-shaped touchpad button, [8] [9] as was the second generation Microsoft Zune. [10] Apple uses an approximation of a squircle (actually a quintic superellipse) for icons in iOS, iPadOS, macOS, and the home buttons of some Apple hardware. [11] One of the shapes for adaptive icons introduced in the Android "Oreo" operating system is a squircle. [12] Samsung uses squircle-shaped icons in their Android software overlay One UI, and in Samsung Experience and TouchWiz. [13]

Italian car manufacturer Fiat used numerous squircles in the interior and exterior design of the third generation Panda. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc.

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is a special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates comprising a distance and an angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Superellipse</span> Family of closed mathematical curves

A superellipse, also known as a Lamé curve after Gabriel Lamé, is a closed curve resembling the ellipse, retaining the geometric features of semi-major axis and semi-minor axis, and symmetry about them, but defined by an equation that allows for various shapes between a rectangle and an ellipse.

<span class="mw-page-title-main">Curvature</span> Mathematical measure of how much a curve or surface deviates from flatness

In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or surface is contained in a larger space, curvature can be defined extrinsically relative to the ambient space. Curvature of Riemannian manifolds of dimension at least two can be defined intrinsically without reference to a larger space.

<span class="mw-page-title-main">Law of sines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles, while R is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the reciprocals; The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the triangle is not uniquely determined by this data and the technique gives two possible values for the enclosed angle.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

<span class="mw-page-title-main">Ptolemy's theorem</span> Relates the 4 sides and 2 diagonals of a quadrilateral with vertices on a common circle

In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral. The theorem is named after the Greek astronomer and mathematician Ptolemy. Ptolemy used the theorem as an aid to creating his table of chords, a trigonometric table that he applied to astronomy.

<span class="mw-page-title-main">Wetting</span> Ability of a liquid to maintain contact with a solid surface

Wetting is the ability of a liquid to displace gas to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together. This happens in presence of a gaseous phase or another liquid phase not miscible with the first one. The degree of wetting (wettability) is determined by a force balance between adhesive and cohesive forces. There are two types of wetting: non-reactive wetting and reactive wetting.

<span class="mw-page-title-main">Osculating circle</span> Circle of immediate corresponding curvature of a curve at a point

An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

<span class="mw-page-title-main">Arc length</span> Distance along a curve

Arc length is the distance between two points along a section of a curve.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

<span class="mw-page-title-main">Superegg</span> Special type of superellipsoid

In geometry, a superegg is a solid of revolution obtained by rotating an elongated superellipse with exponent greater than 2 around its longest axis. It is a special case of superellipsoid.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

<span class="mw-page-title-main">Radius of curvature</span> Radius of the circle which best approximates a curve at a given point

In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof.

<span class="mw-page-title-main">Superparabola</span>

A superparabola is a geometric curve defined in the Cartesian coordinate system as a set of points (x, y) with where p, a, and b are positive integers. This equation defines an open curve within the rectangle , .

References

  1. 1 2 Weisstein, Eric W. "Squircle". MathWorld .
  2. 1 2 Chamberlain Fong (2016). "Squircular Calculations". arXiv: 1604.02174 [math.GM].
  3. M. Fernández Guasti (1992). "Analytic Geometry of Some Rectilinear Figures". Int. J. Educ. Sci. Technol. 23: 895–901.
  4. 1 2 M. Fernández Guasti; A. Meléndez Cobarrubias; F.J. Renero Carrillo; A. Cornejo Rodríguez (2005). "LCD pixel shape and far-field diffraction patterns" (PDF). Optik . 116 (6): 265–269. Bibcode:2005Optik.116..265F. doi:10.1016/j.ijleo.2005.01.018 . Retrieved 20 November 2006.
  5. C. Fong (2022). "Visualizing Squircular Implicit Surfaces". arXiv: 2210.15232 [cs.GR].
  6. "Periodic Squircle in Desmos".
  7. "Squircle Plate". Kitchen Contraptions. Archived from the original on 1 November 2006. Retrieved 20 November 2006.
  8. Nokia Designer Mark Delaney mentions the squircle in a video regarding classic Nokia phone designs:
    Nokia 6700 – The little black dress of phones. Archived from the original on 6 January 2010. Retrieved 9 December 2009. See 3:13 in video
  9. "Clayton Miller evaluates shapes on mobile phone platforms" . Retrieved 2 July 2011.
  10. Marsal, Katie (2 September 2009). "Microsoft discontinues hard drives, "squircle" from Zune lineup". Apple Insider. Retrieved 25 August 2022.
  11. "The Hunt for the Squircle" . Retrieved 23 May 2022.
  12. "Adaptive Icons" . Retrieved 15 January 2018.
  13. "OneUI". Samsung Developers. Retrieved 2022-04-14.
  14. "PANDA DESIGN STORY" (PDF). Retrieved 30 December 2018.