Stenotrophomonas

Last updated

Stenotrophomonas
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Stenotrophomonas

Palleroni & Bradbury 1993
Species

S. acidaminiphila
S. bentonitica [1]
S. chelatiphaga [1]
S. daejeonensis [1]
S. dokdonensis
S. ginsengisoli [1]
S. humi [1]
S. indicatrix [1]
S. koreensis
S. lactitubi [1]
S. maltophilia
S. nitritireducens
S. pavanii [1]
S. pictorum [1]
S. rhizophila
S. terrae [1]
S. tumulicola [1]

Contents

Gram-stained S. maltophilia Stenotrophomonas maltophilia.jpg
Gram-stained S. maltophilia

Stenotrophomonas is a genus of Gram-negative bacteria, [2] comprising at least ten species. The main reservoirs of Stenotrophomonas are soil and plants. [3] Stenotrophomonas species range from common soil organisms (S. nitritireducens) to opportunistic human pathogens ( S. maltophilia ); the molecular taxonomy of the genus is still somewhat unclear. [4]

Importance

The most common species, S. maltophilia is very versatile and can be beneficial for plant growth and health, can be used in agriculture, biocontrol, bioremediation and phytoremediation strategies as well as the production of biomolecules of economic value. [3] On the other hand, some of S. maltophilia strains are pathogenic to humans with multidrug resistant profile. [3] S. indologenes can also cause or be part of polymicrobial infections in humans, especially small children. [5] Stenotrophomonas can also be phytopathogenic unlike closely related genera Xylella and Xanthomonas . [3] Members of the genus Stenotrophomonas have an important ecological role in the nitrogen and sulphur cycles. Stenotrophomonas species, especially S. maltophilia and S. rhizophila, are often found in association with plants, such as cucumber, oilseed rape, potato, strawberry, alfalfa, sunflower, maize, rice, wheat, various weeds, willow and poplar. Stenotrophomonas can be isolated from the rhizosphere or from internal plant tissues, particularly from the vascular tissues of the root and stem. [3]

History

The first species described was S. maltophila by Hugh and Ryschenko in 1961. At the time it was named Pseudomonas maltophilia, but later transferred to the genus Xanthomonas before it was given its own genus. The genus name (from the Greek ‘stenos’, meaning narrow, ‘trophus’, meaning one who feeds and ‘monas’, meaning unit) was intended to highlight the limited nutritional range of the bacterium. However, several studies subsequently demonstrated that the genus is capable of great metabolic versatility and intraspecific heterogeneity. [3] [2]

Genetics

Full genome sequence of an environmental isolate, S. maltophilia R551‑3, and a clinical isolate, S. maltophilia K279a, are available. [3] Both strains contain genes that encode type I pili, which have been implicated in adhesion and the early stages of biofilm formation, and type IV pili, which have been implicated in adherence, auto-aggregation, twitching motility and biofilm formation. Conserved distribution of pili-coding gene clusters in sequenced genomes may indicate similarities in the plant and animal colonization strategies. [3] The identification of Stenotrophomonas spp. is problematic, as these bacteria show no activities in most of the standard metabolism-based phenotyping panels. Additionally, the species are genotypically similar, with 95.7–99.6% 16S rRNA gene sequence similarities. One of the housekeeping genes gyrB, encoding the B-subunit of the DNA gyrase, has successfully employed for typing. [6] [7] Moreover, gyrB sequence comparisons, indicate that strains identified as S. maltophilia may represent distinct new species. [7]

Small palindromic elements that carry tetranucleotide GTAG at one terminus were found to be widespread in the genome of Stenotrophomonas maltophilia. The repeats are species-specific variants of the superfamily of repetitive extragenic palindromes (REPs). Hundreds of genes are immediately flanked by these repeats and they likely function as RNA control sequences by the folding of the repeats in the mRNA and either stabilizing upstream transcripts or favoring their degradation. [8]

Metabolism

Stenotrophomonas spp. can efficiently colonize such different biotopes as plants, humans and marine environments. Stenotrophomonas spp. metabolize a large range of organic compounds present in the rhizosphere, including phenolic compounds found in plant root exudates. S. maltophilia can degrade p‑nitrophenol and 4‑chlorophenol, polycyclic aromatic hydrocarbons, selenium compounds, benzene, toluene, ethylbenzene and xenobiotics. Stenotrophomonas spp. produces plant growth hormone indole‑3‑acetic acid (IAA), it can also promote plant growth due to nitrogen fixation and the oxidation of elemental sulphur, which in turn provides sulphate for the plants. Many S. maltophilia strains have intrinsic resistance to various heavy metals. [3] Most S. maltophilia isolates produce antifungal compounds, such as maltophilin and xanthobaccin or volatile organic compounds with antifungal activity. S. maltophilia strains have an extraordinarily high hydrolytic potential; they produce diverse proteases, chitinases, glucanases, DNases, RNases, lipases and laccases. [3] S. maltophilia are equipped for iron uptake, as they produce the siderophore enterobactin and many TonB‑dependent receptors (TBDRs) used for the active transport of iron–siderophore complexes. [3]

Related Research Articles

<i>Pseudomonas</i> Genus of Gram-negative bacteria

Pseudomonas is a genus of Gram-negative bacteria belonging to the family Pseudomonadaceae in the class Gammaproteobacteria. The 313 members of the genus demonstrate a great deal of metabolic diversity and consequently are able to colonize a wide range of niches. Their ease of culture in vitro and availability of an increasing number of Pseudomonas strain genome sequences has made the genus an excellent focus for scientific research; the best studied species include P. aeruginosa in its role as an opportunistic human pathogen, the plant pathogen P. syringae, the soil bacterium P. putida, and the plant growth-promoting P. fluorescens, P. lini, P. migulae, and P. graminis.

<span class="mw-page-title-main">Bacteroidota</span> Phylum of Gram-negative bacteria

The phylum Bacteroidota is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.

<i>Pseudomonas fluorescens</i> Species of bacterium

Pseudomonas fluorescens is a common Gram-negative, rod-shaped bacterium. It belongs to the Pseudomonas genus; 16S rRNA analysis as well as phylogenomic analysis has placed P. fluorescens in the P. fluorescens group within the genus, to which it lends its name.

<i>Acinetobacter</i> Genus of bacteria

Acinetobacter is a genus of Gram-negative bacteria belonging to the wider class of Gammaproteobacteria. Acinetobacter species are oxidase-negative, exhibit twitching motility, and occur in pairs under magnification.

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota, and the type genus of the family Streptomycetaceae. Over 700 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have very large genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin. Different strains of the same species may colonize very diverse environments.

<span class="mw-page-title-main">Xanthomonadales</span> Order of bacteria

The Xanthomonadales are a bacterial order within the Gammaproteobacteria. They are one of the largest groups of bacterial phytopathogens, harbouring species such as Xanthomonas citri, Xanthomonas euvesicatoria, Xanthomonas oryzae and Xylella fastidiosa. These bacteria affect agriculturally important plants including tomatoes, bananas, citrus plants, rice, and coffee. Many species within the order are also human pathogens. Species within the genus Stenotrophomonas are multidrug resistant opportunistic pathogens that are responsible for nosocomial infections in immunodeficient patients.

<i>Paenibacillus</i> Genus of bacteria

Paenibacillus is a genus of facultative anaerobic, endospore-forming bacteria, originally included within the genus Bacillus and then reclassified as a separate genus in 1993. Bacteria belonging to this genus have been detected in a variety of environments, such as: soil, water, rhizosphere, vegetable matter, forage and insect larvae, as well as clinical samples. The name reflects: Latin paene means almost, so the paenibacilli are literally "almost bacilli". The genus includes P. larvae, which causes American foulbrood in honeybees, P. polymyxa, which is capable of fixing nitrogen, so is used in agriculture and horticulture, the Paenibacillus sp. JDR-2 which is a rich source of chemical agents for biotechnology applications, and pattern-forming strains such as P. vortex and P. dendritiformis discovered in the early 90s, which develop complex colonies with intricate architectures as shown in the pictures:

Bacillus safensis is a Gram-positive, spore-forming, and rod bacterium, originally isolated from a spacecraft in Florida and California. B. safensis could have possibly been transported to the planet Mars on spacecraft Opportunity and Spirit in 2004. There are several known strains of this bacterium, all of which belong to the Bacillota phylum of Bacteria. This bacterium also belongs to the large, pervasive genus Bacillus. B. safensis is an aerobic chemoheterotroph and is highly resistant to salt and UV radiation. B. safensis affects plant growth, since it is a powerful plant hormone producer, and it also acts as a plant growth-promoting rhizobacteria, enhancing plant growth after root colonization. Strain B. safensis JPL-MERTA-8-2 is the only bacterial strain shown to grow noticeably faster in micro-gravity environments than on the Earth surface.

<i>Stenotrophomonas maltophilia</i> Species of bacterium

Stenotrophomonas maltophilia is an aerobic, nonfermentative, Gram-negative bacterium. It is an uncommon bacterium and human infection is difficult to treat. Initially classified as Bacterium bookeri, then renamed Pseudomonas maltophilia, S. maltophilia was also grouped in the genus Xanthomonas before eventually becoming the type species of the genus Stenotrophomonas in 1993.

<i>Burkholderia cenocepacia</i> Species of bacterium

Burkholderia cenocepacia is a Gram-negative, rod-shaped bacterium that is commonly found in soil and water environments and may also be associated with plants and animals, particularly as a human pathogen. It is one of over 20 species in the Burkholderia cepacia complex (Bcc) and is notable due to its virulence factors and inherent antibiotic resistance that render it a prominent opportunistic pathogen responsible for life-threatening, nosocomial infections in immunocompromised patients, such as those with cystic fibrosis or chronic granulomatous disease. The quorum sensing systems CepIR and CciIR regulate the formation of biofilms and the expression of virulence factors such as siderophores and proteases. Burkholderia cenocepacia may also cause disease in plants, such as in onions and bananas. Additionally, some strains serve as plant growth-promoting rhizobacteria.

<i>Xanthomonas campestris</i> Species of bacterium

Xanthomonas campestris is a gram-negative, obligate aerobic bacterium that is a member of the Xanthomonas genus, which is a group of bacteria that are commonly known for their association with plant disease. The species is considered to be dominant amongst its genus, as it originally had over 140 identified pathovars and has been found to infect both monocotyledonous and dicotyledonous plants of economical value with various plant diseases. This includes "black rot" in cruciferous vegetables, bacterial wilt of turfgrass, bacterial blight, and leaf spot, for example.

<i>Xanthomonas</i> Genus of bacteria

Xanthomonas is a genus of bacteria, many of which cause plant diseases. There are at least 27 plant associated Xanthomonas spp., that all together infect at least 400 plant species. Different species typically have specific host and/or tissue range and colonization strategies.

<span class="mw-page-title-main">Rhizobacteria</span> Group of bacteria affecting plant growth

Rhizobacteria are root-associated bacteria that can have a detrimental, neutral or beneficial effect on plant growth. The name comes from the Greek rhiza, meaning root. The term usually refers to bacteria that form symbiotic relationships with many plants (mutualism). Rhizobacteria are often referred to as plant growth-promoting rhizobacteria, or PGPRs. The term PGPRs was first used by Joseph W. Kloepper in the late 1970s and has become commonly used in scientific literature.

<i>Lysobacter</i> Genus of bacteria

The genus Lysobacter belongs to the family Xanthomonadaceae within the Gammaproteobacteria and includes at least 46 named species, including: Lysobacter enzymogenes, L. antibioticus, L. gummosus, L. brunescens, L. defluvii, L. niabensis, L. niastensis, L. daejeonensis, L. yangpyeongensis, L. koreensis, L. concretionis, L. spongiicola, and L. capsici. Lysobacter spp. were originally grouped with myxobacteria because they shared the distinctive trait of gliding motility, but they uniquely display a number of traits that distinguish them from other taxonomically and ecologically related microbes including high genomic G+C content and the lack of flagella. The feature of gliding motility alone has piqued the interest of many, since the role of gliding bacteria in soil ecology is poorly understood. In addition, while a number of different mechanisms have been proposed for gliding motility among a wide range of bacterial species, the genetic mechanism in Lysobacter remains unknown. Members of the Lysobacter group have gained broad interest for production of extracellular enzymes. The group is also regarded as a rich source for production of novel antibiotics, such as β-lactams containing substituted side chains, macrocyclic lactams and macrocyclic peptide or depsipeptide antibiotics like the katanosins.

SmeT is a transcriptional repressor protein of 24.6 kDa, found in the pathogenic bacteria Stenotrophomonas maltophilia. SmeT is responsible for the regulation of the Multidrug Resistance (MDR) efflux pump, SmeDEF, that gives the bacteria resistance to several antibiotics including macrolides, TMP/SMX, tetracycline, chloramphenicol, quinolones and erythromycin. SmeT is encoded 223 bp upstream of SmeDEF, with just 56 base pairs between their transcription start sites and an overlapping region between the promoters. The production of the SmeT protein downregulates its own transcription, along with that of the efflux pump by sterically hindering the binding of RNA Polymerase to the DNA. SmeDEF was the first MDR pump discovered in the S. maltophilia species. The pump is named by its different parts: SmeE, the transporter itself that spans the plasma membrane, SmeF, the protein on the outer portion of the membrane, and SmeD, a membrane fusion protein. On general purpose media and no selectors, the genes for MDR pumps are typically not expressed, and the repressor is found bound to the DNA. In fact, mutations in SmeT that lead to overexpression of SmeDEF can pose fitness challenges to the bacteria. However, this overexpression has been identified in the bacterium and may pose a threat to our health.

Deinococcus ficus strain CC-FR2-10T is a recently discovered gram-positive bacteria which plays a role in the production of nitrogen fertilizer. It was originally isolated from a Ficus plant, hence its name.

Stenotrophomonas nitritireducens is a yellow-pigmented bacteria, named after its quality to reduce nitrite. It is a common soil bacteria. Its type strain is L2T.

Hentriacontanonaene is a long-chain polyunsaturated hydrocarbon produced by numerous gamma-proteobacteria primarily from the marine environment. Hentriacontanonaene was originally isolated from bacterial isolates from Antarctic sea ice cores. All isolated bacteria that produced hentriacontanonaene also produced the polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Given its polyunsaturated nature it has been proposed that this molecule is produced as part of a response to maintain optimal membrane fluidity.

Xanthoferrin is an α-hydroxycarboxylate-type of siderophore produced by xanthomonads. Xanthomonas spp. secrete xanthoferrin to chelate iron under low-iron conditions. The xanthoferrin siderophore mediated iron uptake supports bacterial growth under iron-restricted environment.

Diffusible signal factor (DSF) is found in several gram-negative bacteria and play a role in the formation of biofilms, motility, virulence, and antibiotic resistance. Xanthomonas campestris was the first bacteria known to have DSF. The synthesis of the DSF can be seen in rpfF and rpfB enzymes. An understanding of the DSF signaling mechanism could lead to further disease control.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 Parte, A.C. "Stenotrophomonas". LPSN .
  2. 1 2 Palleroni N, Bradbury J (1993). "Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983". Int J Syst Bacteriol. 43 (3): 606–9. doi: 10.1099/00207713-43-3-606 . PMID   8347518.
  3. 1 2 3 4 5 6 7 8 9 10 11 Ryan, Robert P.; Monchy, Sebastien; Cardinale, Massimiliano; Taghavi, Safiyh; Crossman, Lisa; Avison, Matthew B.; Berg, Gabriele; van der Lelie, Daniel; Dow, J. Maxwell (2009). "The versatility and adaptation of bacteria from the genus Stenotrophomonas". Nature Reviews Microbiology. 7 (7): 514–525. doi: 10.1038/nrmicro2163 . ISSN   1740-1526. PMID   19528958.
  4. Hauben L, Vauterin L, Moore E, Hoste B, Swings J (1999). "Genomic diversity of the genus Stenotrophomonas". Int J Syst Bacteriol. 49 (4): 1749–60. doi: 10.1099/00207713-49-4-1749 . PMID   10555357.
  5. Aykac, Kubra; Ozsurekci, Yasemin; Tuncer, Ozlem; Sancak, Banu; Cengiz, Ali Bulent; Kara, Ates; Ceyhan, Mehmet (2016). "Six cases during 2012–2015 and literature review of Chryseobacterium indologenes infections in pediatric patients". Canadian Journal of Microbiology. 62 (10): 812–819. doi:10.1139/cjm-2015-0800. ISSN   0008-4166. PMID   27397741.
  6. Coenye, Tom; Vanlaere, Elke; LiPuma, John J; Vandamme, Peter (2004). "Identification of genomic groups in the genus Stenotrophomonas using gyrB RFLP analysis". FEMS Immunology & Medical Microbiology. 40 (3): 181–185. doi: 10.1016/S0928-8244(03)00307-9 . PMID   15039092.
  7. 1 2 Svensson-Stadler, Liselott A.; Mihaylova, Sashka A.; Moore, Edward R.B. (2012). "Stenotrophomonas interspecies differentiation and identification by gyrB sequence analysis". FEMS Microbiology Letters. 327 (1): 15–24. doi: 10.1111/j.1574-6968.2011.02452.x . PMID   22092789.
  8. Rocco, Francesco; De Gregorio, Eliana; Di Nocera, Pier Paolo (2010). "A giant family of short palindromic sequences in Stenotrophomonas maltophilia: Stenotrophomonas maltophilia REPs". FEMS Microbiology Letters: no. doi: 10.1111/j.1574-6968.2010.02010.x .