Succinate—CoA ligase (ADP-forming)

Last updated
succinate-CoA ligase (ADP-forming)
2scu.png
Succinyl-COA synthetase from Escherichia coli. PDB 2scu [1]
Identifiers
EC no. 6.2.1.5
CAS no. 9080-33-5
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a succinate-CoA ligase (ADP-forming) (EC 6.2.1.5) is an enzyme that catalyzes the chemical reaction

ATP + succinate + CoA ADP + phosphate + succinyl-CoA

The 3 substrates of this enzyme are ATP, succinate, and CoA, whereas its 3 products are ADP, phosphate, and succinyl-CoA.

This enzyme belongs to the family of ligases, specifically those forming carbon-sulfur bonds as acid-thiol ligases. The systematic name of this enzyme class is succinate:CoA ligase (ADP-forming). Other names in common use include succinyl-CoA synthetase (ADP-forming), succinic thiokinase, succinate thiokinase, succinyl-CoA synthetase, succinyl coenzyme A synthetase (adenosine diphosphate-forming), succinyl coenzyme A synthetase, A-STK (adenin nucleotide-linked succinate thiokinase), STK, and A-SCS. This enzyme participates in 4 metabolic pathways: Citric acid cycle, propanoate metabolism, c5-branched dibasic acid metabolism, and reductive carboxylate cycle (CO2 fixation).

Structural studies

As of late 2007, 12 structures have been solved for this class of enzymes, with PDB accession codes 1CQI, 1CQJ, 1JKJ, 1JLL, 1OI7, 1SCU, 2NU6, 2NU7, 2NU8, 2NU9, 2NUA, and 2SCU.

Related Research Articles

Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the reaction catalyzed by creatine kinase is not considered as "substrate-level phosphorylation"). This process uses some of the released chemical energy, the Gibbs free energy, to transfer a phosphoryl (PO3) group to ADP or GDP. Occurs in glycolysis and in the citric acid cycle.

<span class="mw-page-title-main">Succinyl coenzyme A synthetase</span> Class of enzymes

Succinyl coenzyme A synthetase is an enzyme that catalyzes the reversible reaction of succinyl-CoA to succinate. The enzyme facilitates the coupling of this reaction to the formation of a nucleoside triphosphate molecule from an inorganic phosphate molecule and a nucleoside diphosphate molecule. It plays a key role as one of the catalysts involved in the citric acid cycle, a central pathway in cellular metabolism, and it is located within the mitochondrial matrix of a cell.

<span class="mw-page-title-main">Long-chain-fatty-acid—CoA ligase</span> Class of enzymes

The long chain fatty acyl-CoA ligase is an enzyme of the ligase family that activates the oxidation of complex fatty acids. Long chain fatty acyl-CoA synthetase catalyzes the formation of fatty acyl-CoA by a two-step process proceeding through an adenylated intermediate. The enzyme catalyzes the following reaction,

<span class="mw-page-title-main">3-oxoacid CoA-transferase</span> Enzyme family

In enzymology, a 3-oxoacid CoA-transferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Acetate—CoA ligase (ADP-forming)</span> Class of enzymes

In enzymology, an acetate—CoA ligase (ADP-forming) is an enzyme that catalyzes the chemical reaction

Butyrate—CoA ligase, also known as xenobiotic/medium-chain fatty acid-ligase (XM-ligase), is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">D-alanine—D-alanine ligase</span> Enzyme belonging to the ligase family

In enzymology, a D-alanine—D-alanine ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a dethiobiotin synthase (EC 6.3.3.3) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Dihydrofolate synthase</span> Class of enzymes

In enzymology, a dihydrofolate synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Formate–tetrahydrofolate ligase</span>

In enzymology, a formate—tetrahydrofolate ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a glutarate—CoA ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a malate—CoA ligase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylaminoimidazolesuccinocarboxamide synthase</span> Class of enzymes

In molecular biology, the protein domain SAICAR synthase is an enzyme which catalyses a reaction to create SAICAR. In enzymology, this enzyme is also known as phosphoribosylaminoimidazolesuccinocarboxamide synthase. It is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylformylglycinamidine synthase</span>

In enzymology, a phosphoribosylformylglycinamidine synthase (EC 6.3.5.3) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Succinate—CoA ligase (GDP-forming)</span>

In enzymology, a succinate—CoA ligase (GDP-forming) is an enzyme that catalyzes the chemical reaction

In enzymology, a tetrahydrofolate synthase is an enzyme that catalyzes the chemical reaction

In enzymology, a UDP-N-acetylmuramate—L-alanine ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a UDP-N-acetylmuramoyl-L-alanine—D-glutamate ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a dephospho-CoA kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">SUCLG1</span> Protein-coding gene in the species Homo sapiens

Succinyl-CoA ligase [GDP-forming] subunit alpha, mitochondrial is an enzyme that in humans is encoded by the SUCLG1 gene.

References

  1. Fraser, M. E.; James, M. N. G.; Bridger, W. A.; Wolodko, W. T. (1999). "A detailed structural description of Escherichia coli succinyl-CoA synthetase1". Journal of Molecular Biology. 285 (4): 1633–1653. doi:10.1006/jmbi.1998.2324. PMID   9917402.