TRNA (cytosine38-C5)-methyltransferase

Last updated
TRNA (cytosine38-C5)-methyltransferase
Identifiers
EC no. 2.1.1.204
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

TRNA (cytosine38-C5)-methyltransferase (EC 2.1.1.204, hDNMT2 (gene), DNMT2 (gene), TRDMT1 (gene)) is an enzyme with the systematic name S-adenosyl-L-methionine:tRNA (cytosine38-C5)-methyltransferase. [1] [2] [3] This enzyme catalyses the following chemical reaction:

Contents

S-adenosyl-L-methionine + cytosine 38 in tRNA S-adenosyl-L-homocysteine + 5-methylcytosine 38 in tRNA

The eukaryotic enzyme catalyses methylation of cytosine38 in the anti-codon loop of tRNAAsp(GTC), tRNAVal(AAC) and tRNAGly(GCC).

See also

Related Research Articles

<span class="mw-page-title-main">Methyltransferase</span> Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

23S rRNA (guanosine2251-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanosine2251-2'-O-)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (guanine745-N1)-methyltransferase (EC 2.1.1.187, Rlma(I), Rlma1, 23S rRNA m1G745 methyltransferase, YebH, RlmAI methyltransferase, ribosomal RNA(m1G)-methylase, rRNA(m1G)methylase, RrmA, 23S rRNA:m1G745 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine745-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (cytidine32/uridine32-2'-O)-methyltransferase (EC 2.1.1.200, YfhQ, tRNA:Cm32/Um32 methyltransferase, TrMet(Xm32), TrmJ) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (cytidine32/uridine32-2'-O)-methyltransferase. This enzyme catalyses the following chemical reaction

Multisite-specific tRNA:(cytosine-C5)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (cytosine-C5)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (cytosine34-C5)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (cytosine34-C5)-methyltransferase. This enzyme catalyses the following chemical reaction

tRNA (cytidine56-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (cytidine56-2'-O)-methyltransferase. This enzyme catalyses the following chemical reaction

tRNA (cytidine34-2'-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (cytidine34/5-carboxymethylaminomethyluridine34-2'-O)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (guanine10-N2)-dimethyltransferase (EC 2.1.1.213, PAB1283, N(2),N(2)-dimethylguanosine tRNA methyltransferase, Trm-G10, PabTrm-G10, PabTrm-m2 2G10 enzyme) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine10-N2)-dimethyltransferase. This enzyme catalyses the following chemical reaction

TRNA (guanine10-N2)-methyltransferase (EC 2.1.1.214, (m2G10) methyltransferase, Trm11-Trm112 complex) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine10-N2)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (guanine26-N2)-dimethyltransferase (EC 2.1.1.216, Trm1p, TRM1, tRNA (m22G26)dimethyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine26-N2)-dimethyltransferase. This enzyme catalyses the following chemical reaction

TRNA (adenine22-N1)-methyltransferase (EC 2.1.1.217, TrmK, YqfN, Sp1610 (gene), tRNA: m1A22 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (adenine22-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (adenine9-N1)-methyltransferase (EC 2.1.1.218, Trm10p, tRNA(m1G9/m1A9)-methyltransferase, tRNA(m1G9/m1A9)MTase, TK0422p (gene), tRNA m1A9-methyltransferase, tRNA m1A9 Mtase) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (adenine9-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (adenine57-N1/adenine58-N1)-methyltransferase (EC 2.1.1.219, TrmI, PabTrmI, AqTrmI, MtTrmI) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (adenine57/adenine58-N1)-methyltransferase. This enzyme catalyses the following chemical reaction:

TRNA (adenine58-N1)-methyltransferase (EC 2.1.1.220, tRNA m1A58 methyltransferase, tRNA (m1A58) methyltransferase, TrmI, tRNA (m1A58) Mtase, Rv2118cp, Gcd10p-Gcd14p, Trm61p-Trm6p) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (adenine58-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (guanine9-N1)-methyltransferase (EC 2.1.1.221, Trm10p, tRNA(m1G9/m1A9)-methyltransferase, tRNA(m1G9/m1A9)MTase, tRNA (guanine-N(1)-)-methyltransferase, tRNA m1G9-methyltransferase, tRNA m1G9 MTase) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine9-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (adenine2503-C8)-methyltransferase (EC 2.1.1.224, Cfr (gene)) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (adenine2503-C8)-methyltransferase. This enzyme catalyses the following chemical reaction

tRNA (guanine37-N1)-methyltransferase (EC 2.1.1.228, TrmD, tRNA (m1G37) methyltransferase, transfer RNA (m1G37) methyltransferase, Trm5p, TRMT5, tRNA-(N1G37) methyltransferase, MJ0883 (gene)) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (guanine37-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (carboxymethyluridine34-5-O)-methyltransferase is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (carboxymethyluridine34-5-O)-methyltransferase. This enzyme catalyses the following chemical reaction

TRNA (pseudouridine54-N1)-methyltransferase (EC 2.1.1.257, TrmY, m1Psi methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:tRNA (pseudouridine54-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

References

  1. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (January 2006). "Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2". Science. 311 (5759): 395–8. doi:10.1126/science.1120976. PMID   16424344.
  2. Jurkowski TP, Meusburger M, Phalke S, Helm M, Nellen W, Reuter G, Jeltsch A (August 2008). "Human DNMT2 methylates tRNA(Asp) molecules using a DNA methyltransferase-like catalytic mechanism". RNA. 14 (8): 1663–70. doi:10.1261/rna.970408. PMC   2491481 . PMID   18567810.
  3. Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F (August 2010). "RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage". Genes & Development. 24 (15): 1590–5. doi:10.1101/gad.586710. PMC   2912555 . PMID   20679393.