Thielaviopsis basicola

Last updated

Thielaviopsis basicola
Thielaviopsis basicola 1.JPG
Microscopic view of Thielaviopsis chlamydospores (black) and endoconidia (hyaline)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Sordariomycetes
Order: Microascales
Family: Ceratocystidaceae
Genus: Thielaviopsis
Species:
T. basicola
Binomial name
Thielaviopsis basicola
(Berk. & Broome) Ferraris (1912)
Synonyms

Chalara elegansNag Raj & W.B. Kendr. (1975)
Torula basicolaBerk. & Broome (1850)
Trichocladium basicola(Berk. & Broome) J.W. Carmich. (1980)

Contents

Thielaviopsis basicola is the plant-pathogen fungus responsible for black root rot disease. This particular disease has a large host range, affecting woody ornamentals, herbaceous ornamentals, agronomic crops, and even vegetable crops.[ citation needed ] Examples of susceptible hosts include petunia, pansy, poinsettia, tobacco, cotton, carrot, lettuce, tomato, and others.[ citation needed ] [1] Symptoms of this disease resemble nutrient deficiency[ citation needed ] but are truly a result of the decaying root systems of plants.[ citation needed ] Common symptoms include chlorotic lower foliage, yellowing of plant, stunting or wilting, and black lesions along the roots. [1] [ citation needed ] The lesions along the roots may appear red at first, getting darker and turning black as the disease progresses. Black root lesions that begin in the middle of a root can also spread further along the roots in either direction. Due to the nature of the pathogen, the disease can easily be identified by the black lesions along the roots, especially when compared to healthy roots.[ citation needed ] The black lesions that appear along the roots are a result of the formation of chlamydospores, resting spores of the fungus that contribute to its pathogenicity. The chlamydospores are a dark brown-black color and cause the "discoloration" of the roots when they are produced in large amounts. [2]

Black root rot. Carrot10.jpeg
Black root rot.

Environment

As a poor saprophyte and obligate parasite, [1] T. basicola is often dependent upon favorable environmental conditions. Although the pathogen is able to grow in a variety of soil moistures, wet soil is optimal for greater infection since spores are able to move easily in water.[ citation needed ] Water plays a role in dispersal of spores and can lead to an increased infection rate. Soil temperatures also play an important role, as temperatures between 55 and 65 °F are favorable for the pathogen. However, temperatures that are higher than 86 °F are unfavorable for the fungus and only traces of the pathogen can be found. [2] At lower temperatures, the severity of the disease increases since the temperatures become unfavorable for and induces stress on the hosts.[ citation needed ] Alkaline clay soils have proven to be conducive to pathogenicity and also favor the pathogen.[ citation needed ] This can be attributed to the fact that the pathogen is suppressed at soils with pH less than 5.2, so increasing pH is favorable for severity of disease. There are also cultural conditions which may induce stress on the host plants that favor the pathogen including high soluble salts, excessive nitrogen fertilizer, low organic matter, etc.[ citation needed ] When the plant undergoes stress due to cultural conditions, there is an increase in susceptibility to opportunistic pathogens such as T. basicola. [2] For this reason, it is important to practice proper cultural conditions such as maintaining proper temperatures, amount of nitrogen fertilizer, and pH of the soil to reduce stress of host plants and decrease susceptibility to disease.[ citation needed ]

Pathogenesis

Thielaviopsis basicola is a soilborne fungus that belongs to the Ascomycota division of the "true fungi" and is a hemibiotrophic parasite. [3] Fungi belonging to Ascomycota are known to produce asexual and sexual spores, however, a sexual stage has yet to be observed and validated in the Thielaviopsis basicola life cycle, which classifies this species as one of the Deuteromycete or an imperfect fungus. [4] During the asexual reproductive cycle of Thielaviopsis basicola, two types of asexual spores are borne from the hyphae including endoconidia and chlamydospores. [4] Endoconidia are a distinctive type of conidium in that they develop within a hollow cavity inside a hyphal tube and are ejected from the end of this tube to disperse. [5] Both of the aforementioned spores must first undergo physical dissemination in order to begin locating an infection court on a new, viable host. Aside from the normal translocation of spores within the soil environment, vectors such as shore flies have been observed carrying and aerially transmitting Thielaviopsis basicola spores, a phenomenon uncharacteristic of soilborne fungal pathogens. [6] Upon landing on an infected plant, the shore flies feed on the infected tissue and ingest spores along with the plant material, only to excrete the hitchhiking spores in their frass, which ultimately lands on healthy plant tissue continuing the disease cycle. [6] However, it is important to note that this association between vector and soilborne fungi has only been observed in commercial agricultural settings in which artificially controlled environments (i.e. greenhouses) promote conditions that deviate from the natural world. [6]

Following dispersal (via vector-insect, cultural practice, or other translocation means within the soil matrix), the spores will detect an infection site on the host plant (usually root hairs) and germinate in response to the stimuli produced by the root exudates, some of which include sugars, lecithins, and unsaturated triglycerides. [7] Germ tubes emerge from the spores and directly penetrate into the cells of the root hairs (typically the single-cell epidermal layer) via penetration hyphae. [7] The living host plant will typically respond with the development of cell appositions called papillae, which attempt to block the pathogen from penetrating the cell wall and subsequently parasitizing the host's cells. [8] However, most of these early defense mechanisms prove unsuccessful, hence the significance and prevalence of the disease around the world. Advancing, the vegetative hyphal cells differentiate into feeding structures that resemble haustoria, which absorb nutrients biotrophically from the host cells. [9] Once the pathogen has breached the cell wall of the epidermal root cell, it proceeds to release effector compounds that disrupt the host's systemic defense mechanisms. [10] Systemic acquired resistance (SAR) is employed by the host to actively address localized infection and initiate defense signaling cascades throughout the plant. For example, the SAR NPR1 (AtNPR1) gene is of special importance and acts to suppress the infection faculties of Thielaviopsis basicola, effectively imparting resistance to some host plants. [10] Furthermore, research suggests that the NPR1 gene, when over-expressed in transgenic plants, aids in the expression of other defense-related genes such as PR1, effectively improving resistance to infection by Thielaviopsis basicola. [10] NPR1 and its associated benefits for enhancing disease resistance have been recognized as possible tools to use when equipping economically indispensable crops with transgenic resistance to disease. [10]

Once penetration and the establishment of biotrophic feeding structures are successful, the pathogen progresses into the root tissue leaving distinctive black/brown lesions in its wake (lesion coloration can be attributed to thick-walled chlamydospore clusters); it continues proliferating until eventually entering its necrotrophic stage. [4] Hemibiotrophs, like Thielaviopsis basicola, transition from a biotrophic stage to a necrotrophic stage by way of a coordinated effort between different pathogenesis genes that secrete effector proteins capable of manipulating their host's defense system. [11] Research suggests that during biotrophy, certain types of effectors from the pathogen are expressed over others and vice versa during the necrotrophic stage. [11] Once the biotrophic stage is no longer preferred by the pathogen, it will initiate this complicated genetic transition and commence the necrotrophic stage. In order to digest and metabolize nutritive compounds from a necrotic host plant, Thielaviopsis basicola secretes enzymes such as xylanase and other hemicellulases, which break down cell tissues making them available to the fungus. [12] During this stage, the pathogen also produces its asexual spores in the lesions to reproduce and disseminate more propagules for continued survival in the soil. [4] In addition to its normal infection process, studies have shown that Thielaviopsis basicola and it's pathogenesis are synergistically linked to a fortuitous coinfection process involving Meloidogyne incognita nematodes when the two are present in the same soil. [13] It has been observed that the infection of host tissues by Meloidogyne incognita facilitates the infection of Thielaviopsis basicola into the root and vascular tissues, effectively allowing the fungal pathogen to optimize infection even when environmental conditions are suboptimal. [13]

Importance

Thielaviopsis basicola was discovered in the mid-1800s and has remained an important plant pathogen affecting ornamental and agricultural plants in over 31 countries around the world. [4] The pathogen is known to stunt or delay maturity in the species it parasitizes, which, coupled with environmental limitations, can lead to severe economic losses. [14] It has been observed that black root rot can delay plant maturity for up to a month and result in over a 40% yield reduction in the affected crop. [14] One crop that is affected by Thielaviopsis basicola and that is of significant economic importance is cotton. In the United States alone, between the years 1995 and 2005, the total annual loss in revenue due to diseases in the cotton crop was $897 million. [15] Thielaviopsis basicola was a significant contributor to that economic loss. In other parts of the world, such as in major cotton producer Australia, Thielaviopsis basicola has a very severe economic impact as well. In Australia, the disease was initially observed in sweet peas in the 1930s. [7] However, black root rot spread to a range of cultivated hosts, especially into Australian cotton production. In fact, surveys taken in 2010 and 2011 of Australian agriculture statistics reported black root rot to be present in 93% of farms and 83% of fields studied. [7] Of the fields affected, yield losses have reached 1.5 bales per acre. [7] The national average of cotton production per hectare in Australia is about 10 bales, so a loss of 1.5 bales per acre (or roughly 3 bales per hectare) to black root rot adds up to a significant loss. [16] In addition to cotton, carrot, lupin, cabbage, clover, and tobacco are all crops cultivated in many different countries that suffer from black root rot. [17] Some important ornamental crops affected by black root rot include: Begonia sp. Daphne cneorum , poinsettia, African daisy, pansy, marigold, and petunia; the list is quite extensive. [18] [19] However, cultural practices have led to the eradication of this disease in many ornamental crops, including poinsettia. During the 1950s and 1960s, poinsettia production was ravaged by black root rot disease. [20] Despite faltering, once the use of soil mixes was traded for soilless alternatives throughout the floriculture industry, black root rot was no longer a threat to poinsettias. [20] Thielaviopsis basicola (black root rot) has been and will remain a significant threat to crops grown globally in both agricultural and horticultural systems.[ citation needed ]

Disease cycle

Thielaviopsis basicola is a soil inhabiting disease. The pathogen typically colonizes root tissue in the first two to eight weeks of crop growth. This causes cortical cell death which gives a brown to blackened appearance in the roots. The death of root cells also reduces development of new tissue in both roots and shoots. Once the fungus has successfully infected, it grows vegetatively via hyphae and produces the two types of spores. [21] In this particular situation, state means imperfect form of the fungi. The "chalara state produces endospores (conidia) and the Thielavopsis produces aleuriospores (chlamydospores). Chlamydospores survive in soil for many years". [22] During wet and cool soil the spores will germinate. It is most "severe from 55° to 61°F, while only a trace of disease develops at 86°F. Alkaline soil favors the disease, which can be prevented at pH 4.8 and greatly reduced at pH 5.5 or below". [21] The fungus can "spread via vectors including- fungus gnats and shore flies, from infected roots to healthy roots if they come into contact with each other and when spores (conidia) are splashed from pot to pot when watered". [23]

Management

Cultural Practices and Mechanical Measures

The first and foremost strategy for controlling T. basicola at the first sign of disease should be cultural control including- "maintaining a soil pH below 5.6, removing and destroying all diseased plants, using soil-less media, sterilizing equipment, keeping work areas clean, and controlling fungus gnats and shore flies. Fungus gnats and shore flies can be vectors; therefore, controlling these pests can lead to minimizing the spread of the fungus". [22] In addition, "crop rotation is recommended for management of black root rot. Soil fumigants, such as chloropicrin, can be helpful for controlling seedbed and sterol inhibitors". [24] Furthermore, "to avoid contamination of plants and potting media, greenhouse floors and walkways should be lightly misted with water to cut down on airborne dust transmission of T. basicola during cleaning operations". [25] At the end of the "growing season, doing a thorough clean-up of the greenhouse can be beneficial because it reduces the possibility of the fungus surviving as a resistant chlamydospores on the soil floor and in wooden benches". [23]

Disease Resistance

Disease resistance can be naturally coded in the genome of the host itself and induced via natural or artificial means, artificially introduced via a number of transgenic or breeding measures, and/or mutually associated with beneficial microbes found within soil ecosystems. Most, if not all, vascular plants utilize a system of defense, which consists of PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). [26] Following localized infection and the influx of associated pathogen stimulants, the aforementioned immune system responses trigger systemic acquired resistance (SAR), which sets off a cascade of defense signaling throughout the plant to initiate defense strategies at distal locations targeted to attack any recognized foreign pathogens. However, even with these innate lines of defense, the pathogen often prevails. This calls for selective breeding, genetic manipulation, or other novel biological control methods. Assessing varieties/cultivars for disease resistance and breeding for selected resistance traits is an important management method utilized by growers and breeders in the fight against Thielaviopsis basicola. [27] Commercially available resistant species of plants, include select varieties of Japanese holly (among other species of holly) and woody plants such as boxwood and barberry. [27] [28] However, in some important crops like cotton, no commercially viable cultivars have been bred with sufficient resistance against black root rot. [7] Interestingly, in Australia, researchers have identified diploid cotton species displaying marked resistance against black root rot, yet cross-breeding these traits into viable commercial crops has proven to be difficult. [7] Similarly, researchers in Poland have uncovered innate disease resistance in the germplasm of a wild-type relative of Nicotiana tabacum called Nicotiana glauca. [17] Moreover, disease resistance genes derived from Nicotiana debneyi (a relative of the previously mentioned tobacco species) have successfully been incorporated into tobacco varieties displaying resilience to multiple races of Thielaviopsis basicola. [17] That being said, selective variety breeding is not the only source of resistance to black root rot in modern plant pathology. Transgenic methods of disease management offer promising new avenues scientists can take to aid in adapting plants to increasingly virulent pathogens. One such mechanism includes the manipulation of the expression of the NPR1 gene in the host plant defense genome sequences. [26] By over-expressing NPR1 genes transgenically in host plants such as cotton, scientists were able to increase the induction of PR genes like PR1 and LIPOXYGENASE1, which led to enhanced resistance by improving yield and limiting stunting. [26] In addition to genetic tools, inventive plant pathologists are exploring other novel methods of control, which include beneficial microbes and biological control agents (BCAs), among many others. Symbiotic associations between arbuscular mycorrhizal fungi and plant roots are well-documented, yet scientists studying host-plant defense have discovered this association may be more arcane than previously thought. Some researchers suggest this association extends to the realm of disease resistance and defense. [29] This phenomenon was analyzed in research conducted by German scientists who studied the transcript expression of defense related genes in Petunia hybrida when they were exposed to Thielaviopsis basicola and also colonized by arbuscular mycorrhizal fungal networks in their rhizosphere. [29] They found that the arbuscular mycorrhiza (AM) symbiosis functioned as a first line of defense by antagonizing the pathogenic fungus before it could ever induce a defense response in the host itself. [29] Thus, it is not inconceivable that control measures involving biotic compliments, such as AM, may be used in the future to control for disease presence in agricultural fields without the use of deleterious chemicals and/or genetic meddling.[ citation needed ]

Infected plants

See:

Related Research Articles

<span class="mw-page-title-main">Texas root rot</span> Pathogenic fungus

Texas root rot is a disease that is fairly common in Mexico and the southwestern United States resulting in sudden wilt and death of affected plants, usually during the warmer months. It is caused by a soil-borne fungus named Phymatotrichopsis omnivora that attacks the roots of susceptible plants. It was first discovered in 1888 by Pammel and later named by Duggar in 1916.

<span class="mw-page-title-main">Fusarium wilt</span> Fungal plant disease

Fusarium wilt is a common vascular wilt fungal disease, exhibiting symptoms similar to Verticillium wilt. This disease has been investigated extensively since the early years of this century. The pathogen that causes Fusarium wilt is Fusarium oxysporum. The species is further divided into formae speciales based on host plant.

Phytophthora sojae is an oomycete and a soil-borne plant pathogen that causes stem and root rot of soybean. This is a prevalent disease in most soybean growing regions, and a major cause of crop loss. In wet conditions the pathogen produces zoospores that move in water and are attracted to soybean roots. Zoospores can attach to roots, germinate, and infect the plant tissues. Diseased roots develop lesions that may spread up the stem and eventually kill the entire plant. Phytophthora sojae also produces oospores that can remain dormant in the soil over the winter, or longer, and germinate when conditions are favourable. Oospores may also be spread by animals or machinery.

<i>Phytophthora palmivora</i> Species of single-celled organism

Phytophthora palmivora is an oomycete that causes bud-rot of palms, fruit-rot or kole-roga of coconut and areca nut. These are among the most serious diseases caused by fungi and moulds in South India. It occurs almost every year in Malnad, Mysore, North & South Kanara, Malabar and other areas. Similar diseases of palms are also known to occur in Sri Lanka, Mauritius, and Sumatra. The causative organism was first identified as P. palmivora by Edwin John Butler in 1917.

This is a glossary of some of the terms used in phytopathology.

<i>Rhizoctonia solani</i> Species of fungus

Rhizoctonia solani is a species of fungus in the order Cantharellales. Basidiocarps are thin, effused, and web-like, but the fungus is more typically encountered in its anamorphic state, as hyphae and sclerotia. The name Rhizoctonia solani is currently applied to a complex of related species that await further research. In its wide sense, Rhizoctonia solani is a facultative plant pathogen with a wide host range and worldwide distribution. It causes various plant diseases such as root rot, damping off, and wire stem. It can also form mycorrhizal associations with orchids.

<span class="mw-page-title-main">Damping off</span> Horticultural disease or condition

Damping off is a horticultural disease or condition, caused by several different pathogens that kill or weaken seeds or seedlings before or after they germinate. It is most prevalent in wet and cool conditions.

<i>Ceratocystis fimbriata</i> Species of fungus

Ceratocystis fimbriata is a fungus and a plant pathogen, attacking such diverse plants as the sweet potato and the tapping panels of the Para rubber tree. It is a diverse species that attacks a wide variety of annual and perennial plants. There are several host-specialized strains, some of which, such as Ceratocystis platani that attacks plane trees, are now described as distinct species.

<i>Phytophthora cactorum</i> Species of single-celled organism

Phytophthora cactorum is a fungal-like plant pathogen belonging to the Oomycota phylum. It is the causal agent of root rot on rhododendron and many other species, as well as leather rot of strawberries.

Phytophthora nicotianae or black shank is an oomycete belonging to the order Peronosporales and family Peronosporaceae.

Nectria radicicola is a plant pathogen that is the causal agent of root rot and rusty root. Substrates include ginseng and Narcissus. It is also implicated in the black foot disease of grapevine. It is of the genus Nectria and the family Nectriaceae. N. radicicola is recognizable due to its unique anatomy, morphology, and the formation of its anamorph Cylindrocarpon desructans.

<i>Macrophomina phaseolina</i> Species of fungus

Macrophomina phaseolina is a Botryosphaeriaceae plant pathogen fungus that causes damping off, seedling blight, collar rot, stem rot, charcoal rot, basal stem rot, and root rot on many plant species.

Ceratocystis paradoxa or Black Rot of Pineapple is a plant pathogen that is a fungus, part of the phylum Ascomycota. It is characterized as the teleomorph or sexual reproduction stage of infection. This stage contains ascocarps, or sacs/fruiting bodies, which contain the sexually produced inoculating ascospores. These are the structures which are used primarily to survive long periods of time or overwinter to prepare for the next growing season of its host. Unfortunately, the sexual stage is not often seen in the natural field but instead the anamorph, or asexual stage is more commonly seen. This asexual stage name is Thielaviopsis paradoxa and is the common cause of Black rot or stem-end rot of its hosts.

Fusarium redolens is a species of fungus in the genus Fusarium and family Nectriaceae. This species is a soil-borne plant pathogen in temperate prairies. It causes diseases such as root, crown, and spear rot, seedling damping-off, and wilting disease. It is a known producer of the alkaloids peimisine and imperialine-3β-d-glucoside, which has implications for traditional Chinese medicine.

<i>Phytophthora capsici</i> Species of single-celled organism

Phytophthora capsici is an oomycete plant pathogen that causes blight and fruit rot of peppers and other important commercial crops. It was first described by L. Leonian at the New Mexico State University Agricultural Experiment Station in Las Cruces in 1922 on a crop of chili peppers. In 1967, a study by M. M. Satour and E. E. Butler found 45 species of cultivated plants and weeds susceptible to P. capsici In Greek, Phytophthora capsici means "plant destroyer of capsicums". P. capsici has a wide range of hosts including members of the families Solanaceae and Cucurbitaceae as well as Fabaceae.

Phytophthora megakarya is an oomycete plant pathogen that causes black pod disease in cocoa trees in west and central Africa. This pathogen can cause detrimental loss of yield in the economically important cocoa industry, worth approximately $70 billion annually. It can damage any part of the tree, causing total yield losses which can easily reach 20-25%. A mixture of chemical and cultural controls, as well as choosing resistant plant varieties, are often necessary to control this pathogen.

<i>Mycocentrospora acerina</i> Species of fungus

Mycocentrospora acerina is a deuteromycete fungus that is a plant pathogen.

<i>Pyrenochaeta lycopersici</i> Species of fungus

Pyrenochaeta lycopersici is a fungal plant pathogen, infecting tomatoes and causing corky root rot.

<i>Alternaria brassicicola</i> Species of fungus

Alternaria brassicicola is a fungal necrotrophic plant pathogen that causes black spot disease on a wide range of hosts, particularly in the genus of Brassica, including a number of economically important crops such as cabbage, Chinese cabbage, cauliflower, oilseeds, broccoli and canola. Although mainly known as a significant plant pathogen, it also contributes to various respiratory allergic conditions such as asthma and rhinoconjunctivitis. Despite the presence of mating genes, no sexual reproductive stage has been reported for this fungus. In terms of geography, it is most likely to be found in tropical and sub-tropical regions, but also in places with high rain and humidity such as Poland. It has also been found in Taiwan and Israel. Its main mode of propagation is vegetative. The resulting conidia reside in the soil, air and water. These spores are extremely resilient and can overwinter on crop debris and overwintering herbaceous plants.

<span class="mw-page-title-main">Alternaria leaf spot</span> Fungal plant disease

Alternaria leaf spot or Alternaria leaf blight are a group of fungal diseases in plants, that have a variety of hosts. The diseases infects common garden plants, such as cabbage, and are caused by several closely related species of fungi. Some of these fungal species target specific plants, while others have been known to target plant families. One commercially relevant plant genus that can be affected by Alternaria Leaf Spot is Brassica, as the cosmetic issues caused by symptomatic lesions can lead to rejection of crops by distributors and buyers. When certain crops such as cauliflower and broccoli are infected, the heads deteriorate and there is a complete loss of marketability. Secondary soft-rotting organisms can infect stored cabbage that has been affected by Alternaria Leaf Spot by entering through symptomatic lesions. Alternaria Leaf Spot diseases that affect Brassica species are caused by the pathogens Alternaria brassicae and Alternaria brassicicola.

References

  1. 1 2 3 Coumans, J. V. F.; Harvey, J.; Backhouse, D.; Poljak, A.; Raftery, M. J.; Nehl, D.; Katz, M. E.; Pereg, L. (March 2011). "Proteomic assessment of host-associated microevolution in the fungus Thielaviopsis basicola: Australian diversity of Thielaviopsis basicola". Environmental Microbiology. 13 (3): 576–588. doi:10.1111/j.1462-2920.2010.02358.x. PMID   20977570.
  2. 1 2 3 "Root Disease Profile: Thielaviopsis". www.pthorticulture.com. Retrieved 2020-12-08.
  3. Coumans, Joëlle V. F.; Moens, Pierre D. J.; Poljak, Anne; Al-Jaaidi, Samiya; Pereg, Lily; Raftery, Mark J. (2010). "Plant-extract-induced changes in the proteome of the soil-borne pathogenic fungus Thielaviopsis basicola". Proteomics. 10 (8): 1573–1591. doi:10.1002/pmic.200900301. PMID   20186748. S2CID   43092779.
  4. 1 2 3 4 5 Nel, W. J.; Duong, T. A.; Beer, Z. W.; Wingfield, M. J. (2019). "Black root rot: A long known but little understood disease". Plant Pathology. 68 (5): 834–842. doi: 10.1111/ppa.13011 . hdl: 2263/70213 . S2CID   91559286.
  5. Delvecchio, V. G.; Corbaz, R.; Turian, G. (1969). "An Ultrastructural Study of the Hyphae, Endoconidia and Chlamydospores of Thielaviopsis basicola". Journal of General Microbiology. 58 (1): 23–27. doi: 10.1099/00221287-58-1-23 . PMID   5391065.
  6. 1 2 3 Stanghellini, M. E.; Rasmussen, S. L.; Kim, D. H. (1999). "Aerial Transmission of Thielaviopsis basicola, a Pathogen of Corn-Salad, by Adult Shore Flies". Phytopathology. 89 (6): 476–479. doi:10.1094/PHYTO.1999.89.6.476. PMID   18944719.
  7. 1 2 3 4 5 6 7 Pereg, Lily L. (2013). "Black root rot of cotton in Australia: The host, the pathogen and disease management". Crop and Pasture Science. 64 (12): 1112. doi: 10.1071/CP13231 . S2CID   83720942.
  8. Mims, Charles W.; Copes, Warren E.; Richardson, Elizabeth A. (2000). "Ultrastructure of the Penetration and Infection of Pansy Roots by Thielaviopsis basicola". Phytopathology. 90 (8): 843–850. doi:10.1094/PHYTO.2000.90.8.843. PMID   18944505.
  9. Hood, M. E.; Shew, H. D. (1997). "Reassessment of the Role of Saprophytic Activity in the Ecology of Thielaviopsis basicola". Phytopathology. 87 (12): 1214–1219. doi:10.1094/PHYTO.1997.87.12.1214. PMID   18945020.
  10. 1 2 3 4 Kumar, Vinod; Joshi, Sameer G.; Bell, Alois A.; Rathore, Keerti S. (2013). "Enhanced resistance against Thielaviopsis basicola in transgenic cotton plants expressing Arabidopsis NPR1 gene". Transgenic Research. 22 (2): 359–368. doi:10.1007/s11248-012-9652-9. PMID   23001518. S2CID   255106731.
  11. 1 2 Lee, Sang-Jik; Rose, Jocelyn K.C. (2010). "Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins". Plant Signaling & Behavior. 5 (6): 769–772. doi:10.4161/psb.5.6.11778. PMC   3001586 . PMID   20400849.
  12. Ghosh, V. K.; Deb, J. K. (1988). "Production and characterization of xylanase from Thielaviopsis basicola". Applied Microbiology and Biotechnology. 29: 44–47. doi:10.1007/BF00258349. S2CID   25512403.
  13. 1 2 Walker, N. R.; Kirkpatrick, T. L.; Rothrock, C. S. (1999). "Effect of Temperature on and Histopathology of the Interaction Between Meloidogyne incognita and Thielaviopsis basicola on Cotton". Phytopathology. 89 (8): 613–617. doi:10.1094/PHYTO.1999.89.8.613. PMID   18944671.
  14. 1 2 Holman, Sharna. 2016. Black root rot: The research roundup. https://www.cottoninfo.com.au/sites/default/files/documents/BRR%20update%20%28long%29%20v2%20-%20Oct%202016.pdf
  15. Niu, Chen; Lister, Harriet E.; Nguyen, Bay; Wheeler, Terry A.; Wright, Robert J. (2008). "Resistance to Thielaviopsis basicola in the cultivated a genome cotton". Theoretical and Applied Genetics. 117 (8): 1313–1323. doi:10.1007/s00122-008-0865-5. PMID   18754098. S2CID   10844413.
  16. Farrell, Roger. 2018.  Australia: Cotton and Products Annual. USDA Foreign Agricultural Service: Global Agricultural Information Network.[ citation needed ] https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Cotton%20and%20Products%20Annual_Canberra_Australia_3-28-2018.pdf
  17. 1 2 3 Trojak-Goluch, A.; Berbec, A. (2005). "Potential of Nicotiana glauca (Grah.) as a source of resistance to black root rot Thielaviopsis basicola (Berk. And Broome) Ferr. In tobacco improvement". Plant Breeding. 124 (5): 507–510. doi:10.1111/j.1439-0523.2005.01135.x.
  18. Greenhouse Plants, Ornamental-Black Root Rot. Pacific Northwest Pest Management Handbooks. Retrieved October 18, 2020, from https://pnwhandbooks.org/plantdisease/host-disease/greenhouse-plants-ornamental-black-root-rot
  19. Noshad, David; Riseman, Andrew; Punja, Zamir (2007). "Evaluation of Daphne Germplasm for Resistance to Daphne Sudden Death Syndrome Caused by the Soil-borne Pathogen Thielaviopsis basicola". American Society for Horticultural Science. 42 (7): 1639–1643 via American Society for Horticultural Science.
  20. 1 2 Benson, D.M.; Hall, J.L.; Moorman, G.W.; Daughtrey, M.L. (2002). "Poinsettia: The Christmas Flower". Apsnet Feature Articles. doi:10.1094/APSnetFeature-2001-1201.
  21. 1 2 Mondal, A. H.; Nehl, D. B.; Allen, S. J. (2005). "Acibenzolar-S-methyl induces systemic resistance in cotton against black root rot caused by Thielaviopsis basicola". Australasian Plant Pathology. 34 (4): 499–507. doi:10.1071/AP05089. ISSN   0815-3191. S2CID   37007553.
  22. 1 2 Pscheidt, J.W. "Black Root Rot: Thielaviopsis basicola" (PDF). Black Root Rot: Thielaviopsis basicola. Cornell University.
  23. 1 2 "Black Root Rot (Thielaviopsis basicola) in the Greenhouse - CT Integrated Pest Management Program". ipm.uconn.edu. Retrieved 2016-12-08.
  24. "Thielaviopsis basicola". projects.ncsu.edu. Retrieved 2016-12-08.
  25. Leahy, Robert. "Black Root Rot of Pansies" (PDF). Division of Plant Industry.
  26. 1 2 3 Silva, Katchen Julliany P.; Mahna, Nasser; Mou, Zhonglin; Folta, Kevin M. (2018). "NPR1 as a transgenic crop protection strategy in horticultural species". Horticulture Research. 5: 15. doi:10.1038/s41438-018-0026-1. PMC   5862871 . PMID   29581883.
  27. 1 2 Lambe, R.C., and Ridings, W. H. 1979. Black Root Rot of Japanese Holly. Plant Pathology Circular. No. 204. https://www.fdacs.gov/content/download/11211/file/pp204.pdf
  28. Hansen, Mary Ann. Black Root Rot of Japanese Holly. Virginia Cooperative Extension publication 450-606. https://vtechworks.lib.vt.edu/bitstream/handle/10919/48796/450-606_pdf.pdf?sequence=1&isAllowed=y
  29. 1 2 3 Hayek, Soukayna; Gianinazzi-Pearson, Vivienne; Gianinazzi, Silvio; Franken, Philipp (2014). "Elucidating mechanisms of mycorrhiza-induced resistance against Thielaviopsis basicola via targeted transcript analysis of Petunia hybrida genes". Physiological and Molecular Plant Pathology. 88: 67–76. doi:10.1016/j.pmpp.2014.09.003.