Transcortical sensory aphasia

Last updated

Transcortical sensory aphasia (TSA) is a kind of aphasia that involves damage to specific areas of the temporal lobe of the brain, resulting in symptoms such as poor auditory comprehension, relatively intact repetition, and fluent speech with semantic paraphasias present. [1] TSA is a fluent aphasia similar to Wernicke's aphasia (receptive aphasia), with the exception of a strong ability to repeat words and phrases. [2] The person may repeat questions rather than answer them ("echolalia"). [2]

Contents

In all of these ways, TSA is very similar to a more commonly known language disorder, receptive aphasia. However, transcortical sensory aphasia differs from receptive aphasia in that patients still have intact repetition and exhibit echolalia, or the compulsive repetition of words. [3] Transcortical sensory aphasia cannot be diagnosed through brain imaging techniques such as functional magnetic resonance imaging (fMRI), as the results are often difficult to interpret. Therefore, clinicians rely on language assessments and observations to determine if a patient presents with the characteristics of TSA. Patients diagnosed with TSA have shown partial recovery of speech and comprehension after beginning speech therapy.[ citation needed ] Speech therapy methods for patients with any subtype of aphasia are based on the principles of learning and neuroplasticity. Clinical research on TSA is limited because it occurs so infrequently in patients with aphasia that it is very difficult to perform systematic studies.[ citation needed ]

TSA should not be confused with transcortical motor aphasia (TMA), which is characterized by nonfluent speech output, with good comprehension and repetition. Patients with TMA have impaired writing skills, difficulty speaking and difficulty maintaining a clear thought process. [3] Furthermore, TMA is caused by lesions in cortical motor areas of the brain as well as lesions in the anterior portion of the basal ganglia, and can be seen in patients with expressive aphasia. [4]

Affected brain areas

Damage to the inferior left temporal lobe, which is shown in green, is associated with TSA. Gehirn, lateral - Lobi + Stammhirn + Cerebellum eng.svg
Damage to the inferior left temporal lobe, which is shown in green, is associated with TSA.

Transcortical sensory aphasia is caused by lesions in the inferior left temporal lobe of the brain located near Wernicke's area, and is usually due to minor hemorrhage or contusion in the temporal lobe, or infarcts of the left posterior cerebral artery (PCA). [4] One function of the arcuate fasciculus is the connection between Wernicke’s and Broca’s area. In TSA Wernicke’s and Broca’s areas are spared, meaning that lesions do not occur in these regions of the brain. However, since the arcuate fasciculus, Wernicke's area, and Broca's area are secluded from the rest of the brain in TSA, patients still have intact repetition (as information from the arcuate fasciculus is relayed to Broca’s area), but cannot attach meaning to words, either spoken or heard.[ citation needed ]

Characteristics

Transcortical sensory aphasia is characterized as a fluent aphasia. Fluency is determined by direct qualitative observation of the patient’s speech to determine the length of spoken phrases, and is usually characterized by a normal or rapid rate; normal phrase length, rhythm, melody, and articulatory agility; and normal or paragrammatic speech. [5] Transcortical sensory aphasia is a disorder in which there is a discrepancy between phonological processing, which remains intact, and lexical-semantic processing, which is impaired. [6] Therefore, patients can repeat complicated phrases, however they lack comprehension and propositional speech. This disconnect occurs since Wernicke’s area is not damaged in patients with TSA, therefore repetition is spared while comprehension is affected. Patients with intact repetition can repeat both simple and complex phrases spoken by others, e.g. when asked if the patient would like to go for a walk, he or she would respond "go for walk." Although patients can respond appropriately, due to the extent of their TSA, it is most likely that they do not comprehend what others ask them. In addition to problems in comprehension, transcortical sensory aphasia is further characterized based on deficits in naming and paraphasia. [3]

Verbal comprehension

Impaired verbal comprehension can be the result a number of causes such as failure of speech sound discrimination, word recognition, auditory working memory, or syntactic structure building. When clinically examined, patients with TSA will exhibit poor comprehension of verbal commands. [4] [5] Based on the extent of the comprehension deficiency, patients will have difficulty following simple commands, e.g. “close your eyes.” Depending on the extent of affected brain area, patients are able to follow simple commands but may not be able to comprehend more difficult, multistep commands, e.g. “point to the ceiling, then touch your left ear with your right hand." [4] Verbal commands as such, that require the patient to cross over the midline of their body are typically more taxing than commands that involve solely the right or left side. When increasing the complexity of verbal commands comprehension is often tested by varying the grammatical structure of the command to determine whether or not the patient understands different grammatical variations of the same sentence. Commands involving the passive voice or possessive, e.g. "If the snake killed the mouse, which one is still alive," usually result in comprehension problems in those who can understand simple questions.[ citation needed ]

Naming

Naming involves the ability to recall an object. Patients with TSA, as well as patients with all other aphasia subtypes, exhibit poor naming. [5] Clinical assessment of naming involves the observer first asking the patient to name high frequency objects such as clock, door, and chair. TSA patients who name common objects with ease generally have difficulty naming both uncommon objects and specific parts of objects such as lapel, or the dial on a watch. [4]

Paraphasia

Patients with TSA typically exhibit paraphasia; their speech is fluent but often error-prone. Their speech is often unintelligible as they tend to use the wrong words, e.g. tree instead of train or uses words in senseless and incorrect combinations.[ citation needed ]

Diagnosis

Clinical assessment

Sensory aphasia is typically diagnosed by non-invasive evaluations. Neurologists, neuropsychologists or speech pathologists will administer oral evaluations to determine the extent of a patient’s comprehension and speech capability. [7] Initial assessment will determine if the cause of linguistic deficiency is aphasia. If the diagnosis is then confirmed, testing will next address the type of aphasia and its severity. The Boston Diagnostic Aphasia Examination specializes in determining the severity of a sensory aphasia through the observation of conversational behaviors. Several modalities of perception and response are observed in conjunction with the subject’s ability to process sensory information. [8] The location of the brain lesion and type of the aphasia can then be inferred from the observed symptoms. The Minnesota Test for Differential Diagnosis is the most lengthy and thorough assessment of sensory aphasia. It pinpoints weaknesses in the auditory and visual senses, as well as reading comprehension. From this differential diagnosis, a patient’s course of treatment can be determined. After treatment planning, the Porch Index of Communicative Ability is used to evaluate prognosis and the degree of recovery.[ citation needed ]

Imaging

fMRI is a measure of the increase in blood flow to localized areas of the brain that coincide with neural activity and is used to image brain activity related to a specific task or sensory process. It is a commonly used method for imaging brain activity in aphasia patients. User-FastFission-brain.gif
fMRI is a measure of the increase in blood flow to localized areas of the brain that coincide with neural activity and is used to image brain activity related to a specific task or sensory process. It is a commonly used method for imaging brain activity in aphasia patients.

Sensory aphasia cannot be diagnosed through the use of imaging techniques. Differences in cognition between asymptomatic subjects and affected patients can be observed via functional magnetic resonance imaging (fMRI). [9] However, these results only reveal temporal differences in cognition between control and diagnosed subjects. The degree of progression during therapy can also be surveyed through cognition tests monitored by fMRI. Many patients’ progress is assessed over time via repeated testing and corresponding cerebral imaging by fMRI.[ citation needed ]

Management

Due to advances in modern neuroimaging, scientists have been able to gain a better understanding of how language is learned and comprehended. Based on the new data from the world of neuroscience, improvements can be made in coping with the disorder.[ citation needed ]

Therapists have been developing multiple methods of improving speech and comprehension. These techniques utilize three general principles: maximizing therapy occurrences, ensuring behavioral and communicative relevance, and allowing patients to focus on the language tools that are still available in his or her repertoire.[ citation needed ]

Many of the following treatment techniques are used to improve auditory comprehension in patients with aphasia:

A relatively new method of language therapy involves coincidence learning. Coincidence learning focuses on the simultaneous learning of two or more events and stipulates that these events are wired together in the brain, strengthening the learning process.[ citation needed ] Therapists use coincidence learning to find and improve language correlations or coincidences that have been either damaged or deleted by severe cases of aphasia, such as transcortical sensory aphasia.[ citation needed ] This technique is important in brain function and recovery, as it strengthens associated brain areas that remain unaffected after brain damage. It can be achieved with intensive therapy hours in order to maximize time where correlation is emphasized. [11]

Through careful analysis of neuroimaging studies, a correlation has been developed with motor function and the understanding of action verbs.[ citation needed ] For example, leg and motor areas were seen to be activated words such as "kick", leading scientists to understand the connection between motor and language processes in the brain. This is yet another example of using relationships that are related in the brain for the purpose of rehabilitating speech and comprehension. [11]

Of huge importance in aphasia therapy is the need to start practicing as soon as possible.[ citation needed ] Greater recovery occurs when a patient attempts to improve their comprehension and speaking soon after aphasia occurs.[ citation needed ] There is an inverse relationship between the length of time spent not practicing and level of recovery.[ citation needed ] The patient should be pushed to their limits of verbal communication in order for them to practice and build upon their remaining language skills. [11]

One effective therapy technique is using what are known as language games in order to encourage verbal communication. [12] One famous example is known as "Builder's Game", where a 'builder' and a 'helper' must communicate in order to effectively work on a project. The helper must hand the builder the tools he or she may need, which requires effective oral communication. The builder succeeds by requesting tools from the assistant by usually using single word utterances, such as 'hammer' or 'nail'. Thus, when the helper hands the tool to the builder, the game incorporates action with language, a key therapy technique. The assistant would then hand the builder the requested tool. Success of the game occurs when the builder's requests are specific to ensure successful building. [11]

Ultimately, regardless of therapy plan or method, improvement in speech does not appear overnight; it requires a significant time investment by the patient as well as a dedicated speech therapist seeking to ensure that the patient is focusing on the correct speech tasks outside of the clinic.[ citation needed ] Furthermore, the patient must collaborate with friends and family members during their free time in order to maximize the efficacy of the treatment. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Aphasia</span> Inability to comprehend or formulate language

In aphasia, a person may be unable to comprehend or unable to formulate language because of damage to specific brain regions. The major causes are stroke and head trauma; prevalence is hard to determine but aphasia due to stroke is estimated to be 0.1–0.4% in the Global North. Aphasia can also be the result of brain tumors, epilepsy, autoimmune neurological diseases, brain infections, or neurodegenerative diseases.

<span class="mw-page-title-main">Expressive aphasia</span> Language disorder involving inability to produce language

Expressive aphasia, also known as Broca's aphasia, is a type of aphasia characterized by partial loss of the ability to produce language, although comprehension generally remains intact. A person with expressive aphasia will exhibit effortful speech. Speech generally includes important content words but leaves out function words that have more grammatical significance than physical meaning, such as prepositions and articles. This is known as "telegraphic speech". The person's intended message may still be understood, but their sentence will not be grammatically correct. In very severe forms of expressive aphasia, a person may only speak using single word utterances. Typically, comprehension is mildly to moderately impaired in expressive aphasia due to difficulty understanding complex grammar.

<span class="mw-page-title-main">Language center</span> Speech processing areas of the brain

In neuroscience and psychology, the term language center refers collectively to the areas of the brain which serve a particular function for speech processing and production. Language is a core system that gives humans the capacity to solve difficult problems and provides them with a unique type of social interaction. Language allows individuals to attribute symbols to specific concepts, and utilize them through sentences and phrases that follow proper grammatical rules. Finally, speech is the mechanism by which language is orally expressed.

<span class="mw-page-title-main">Receptive aphasia</span> Language disorder involving inability to understand language

Wernicke's aphasia, also known as receptive aphasia, sensory aphasia, fluent aphasia, or posterior aphasia, is a type of aphasia in which individuals have difficulty understanding written and spoken language. Patients with Wernicke's aphasia demonstrate fluent speech, which is characterized by typical speech rate, intact syntactic abilities and effortless speech output. Writing often reflects speech in that it tends to lack content or meaning. In most cases, motor deficits do not occur in individuals with Wernicke's aphasia. Therefore, they may produce a large amount of speech without much meaning. Individuals with Wernicke's aphasia are typically unaware of their errors in speech and do not realize their speech may lack meaning. They typically remain unaware of even their most profound language deficits.

<span class="mw-page-title-main">Broca's area</span> Speech production region in the dominant hemisphere of the hominid brain

Broca's area, or the Broca area, is a region in the frontal lobe of the dominant hemisphere, usually the left, of the brain with functions linked to speech production.

Aphasiology is the study of language impairment usually resulting from brain damage, due to neurovascular accident—hemorrhage, stroke—or associated with a variety of neurodegenerative diseases, including different types of dementia. These specific language deficits, termed aphasias, may be defined as impairments of language production or comprehension that cannot be attributed to trivial causes such as deafness or oral paralysis. A number of aphasias have been described, but two are best known: expressive aphasia and receptive aphasia.

<span class="mw-page-title-main">Brain damage</span> Destruction or degeneration of brain cells

Neurotrauma, brain damage or brain injury (BI) is the destruction or degeneration of brain cells. Brain injuries occur due to a wide range of internal and external factors. In general, brain damage refers to significant, undiscriminating trauma-induced damage.

<span class="mw-page-title-main">Anomic aphasia</span> Medical condition

Anomic aphasia is a mild, fluent type of aphasia where individuals have word retrieval failures and cannot express the words they want to say. By contrast, anomia is a deficit of expressive language, and a symptom of all forms of aphasia, but patients whose primary deficit is word retrieval are diagnosed with anomic aphasia. Individuals with aphasia who display anomia can often describe an object in detail and maybe even use hand gestures to demonstrate how the object is used, but cannot find the appropriate word to name the object. Patients with anomic aphasia have relatively preserved speech fluency, repetition, comprehension, and grammatical speech.

<span class="mw-page-title-main">Wernicke's area</span> Speech comprehension region in the dominant hemisphere of the hominid brain

Wernicke's area, also called Wernicke's speech area, is one of the two parts of the cerebral cortex that are linked to speech, the other being Broca's area. It is involved in the comprehension of written and spoken language, in contrast to Broca's area, which is primarily involved in the production of language. It is traditionally thought to reside in Brodmann area 22, which is located in the superior temporal gyrus in the dominant cerebral hemisphere, which is the left hemisphere in about 95% of right-handed individuals and 70% of left-handed individuals.

<span class="mw-page-title-main">Conduction aphasia</span> Medical condition

Conduction aphasia, also called associative aphasia, is an uncommon form of difficulty in speaking (aphasia). It is caused by damage to the parietal lobe of the brain. An acquired language disorder, it is characterised by intact auditory comprehension, coherent speech production, but poor speech repetition. Affected people are fully capable of understanding what they are hearing, but fail to encode phonological information for production. This deficit is load-sensitive as the person shows significant difficulty repeating phrases, particularly as the phrases increase in length and complexity and as they stumble over words they are attempting to pronounce. People have frequent errors during spontaneous speech, such as substituting or transposing sounds. They are also aware of their errors and will show significant difficulty correcting them.

<span class="mw-page-title-main">Carl Wernicke</span> German physician and neuropathologist (1848–1905)

CarlWernicke was a German physician, anatomist, psychiatrist and neuropathologist. He is known for his influential research into the pathological effects of specific forms of encephalopathy and also the study of receptive aphasia, both of which are commonly associated with Wernicke's name and referred to as Wernicke encephalopathy and Wernicke's aphasia, respectively. His research, along with that of Paul Broca, led to groundbreaking realizations of the localization of brain function, specifically in speech. As such, Wernicke's area has been named after the scientist.

<span class="mw-page-title-main">Global aphasia</span> Medical condition

Global aphasia is a severe form of nonfluent aphasia, caused by damage to the left side of the brain, that affects receptive and expressive language skills as well as auditory and visual comprehension. Acquired impairments of communicative abilities are present across all language modalities, impacting language production, comprehension, and repetition. Patients with global aphasia may be able to verbalize a few short utterances and use non-word neologisms, but their overall production ability is limited. Their ability to repeat words, utterances, or phrases is also affected. Due to the preservation of the right hemisphere, an individual with global aphasia may still be able to express themselves through facial expressions, gestures, and intonation. This type of aphasia often results from a large lesion of the left perisylvian cortex. The lesion is caused by an occlusion of the left middle cerebral artery and is associated with damage to Broca's area, Wernicke's area, and insular regions which are associated with aspects of language.

Transcortical motor aphasia (TMoA), also known as commissural dysphasia or white matter dysphasia, results from damage in the anterior superior frontal lobe of the language-dominant hemisphere. This damage is typically due to cerebrovascular accident (CVA). TMoA is generally characterized by reduced speech output, which is a result of dysfunction of the affected region of the brain. The left hemisphere is usually responsible for performing language functions, although left-handed individuals have been shown to perform language functions using either their left or right hemisphere depending on the individual. The anterior frontal lobes of the language-dominant hemisphere are essential for initiating and maintaining speech. Because of this, individuals with TMoA often present with difficulty in speech maintenance and initiation.

<span class="mw-page-title-main">Mixed transcortical aphasia</span>

Mixed transcortical aphasia is the least common of the three transcortical aphasias. This type of aphasia can also be referred to as "Isolation Aphasia". This type of aphasia is a result of damage that isolates the language areas from other brain regions. Broca's, Wernicke's, and the arcuate fasiculus are left intact; however, they are isolated from other brain regions.

<span class="mw-page-title-main">Foix–Chavany–Marie syndrome</span> Medical condition

Foix–Chavany–Marie syndrome (FCMS), also known as bilateral opercular syndrome, is a neuropathological disorder characterized by paralysis of the facial, tongue, pharynx, and masticatory muscles of the mouth that aid in chewing. The disorder is primarily caused by thrombotic and embolic strokes, which cause a deficiency of oxygen in the brain. As a result, bilateral lesions may form in the junctions between the frontal lobe and temporal lobe, the parietal lobe and cortical lobe, or the subcortical region of the brain. FCMS may also arise from defects existing at birth that may be inherited or nonhereditary. Symptoms of FCMS can be present in a person of any age and it is diagnosed using automatic-voluntary dissociation assessment, psycholinguistic testing, neuropsychological testing, and brain scanning. Treatment for FCMS depends on the onset, as well as on the severity of symptoms, and it involves a multidisciplinary approach.

The Boston Diagnostic Aphasia Examination is a neuropsychological battery used to evaluate adults suspected of having aphasia, and is currently in its third edition. It was created by Harold Goodglass and Edith Kaplan. The exam evaluates language skills based on perceptual modalities, processing functions, and response modalities. Administration time ranges from 20 to 45 minutes for the shortened version but it can last up to 120 minutes for the extended version of the assessment. There are five subtests which include: conversational & expository speech, auditory comprehension, oral expression, reading, and writing. In the extended version all questions are asked while in the shortened version only a few questions are asked within each subtest. Many other tests are sometimes used by neurologists and speech language pathologists on a case-by-case basis, and other comprehensive tests exist like the Western Aphasia Battery.

Paraphasia is a type of language output error commonly associated with aphasia, and characterized by the production of unintended syllables, words, or phrases during the effort to speak. Paraphasic errors are most common in patients with fluent forms of aphasia, and come in three forms: phonemic or literal, neologistic, and verbal. Paraphasias can affect metrical information, segmental information, number of syllables, or both. Some paraphasias preserve the meter without segmentation, and some do the opposite. However, most paraphasias affect both partially.

Apraxia of speech (AOS), also called verbal apraxia, is a speech sound disorder affecting an individual's ability to translate conscious speech plans into motor plans, which results in limited and difficult speech ability. By the definition of apraxia, AOS affects volitional movement pattern. However, AOS usually also affects automatic speech.

<span class="mw-page-title-main">Verbal intelligence</span> The ability to understand concepts in words

Verbal intelligence is the ability to understand and reason using concepts framed in words. More broadly, it is linked to problem solving, abstract reasoning, and working memory. Verbal intelligence is one of the most g-loaded abilities.

Language and Language Disturbances: Aphasic Symptom Complexes and Their Significance for Medicine and Theory of Language is a book on aphasia by Dr. Kurt Goldstein, published in 1948. In Language and Language Disturbances, Goldstein theorized that a loss of abstract processing was the core deficit in aphasia.

References

  1. Manasco, M. (2014). Chapter 7: Motor Speech Disorders: The Dysarthrias. In Introduction to neurogenic communication disorders . Burlington, MA: Jones & Barlett Learning.
  2. 1 2 "Common Classifications of Aphasia". American Speech-Language Hearing Association (ASHA).
  3. 1 2 3 Banich, Marie T.; Compton, Rebecca J. (2010). Cognitive Neuroscience (Third ed.). Cengage Learning. pp. 238–239. ISBN   978-0-8400-3298-0.
  4. 1 2 3 4 5 Drislane, Frank W.; Benatar, Michael; Bernard S. Change; Juan A. Acosta; John E. Croom; Andrew Tarulli; Louis R. Caplan (March 2006). Blueprints Neurology. Lippincott Williams & Wilkins. ISBN   978-1-4051-0463-0.
  5. 1 2 3 Nadeau, Stephen E.; Rothi, Leslie J.; Crosson, Bruce (2000). Aphasia and Language: Theory to Practice. Guilford. pp. 31–39. ISBN   978-1-57230-581-6.
  6. Boatman, D.; Gordon, B. (2000). "Transcortical Sensory Aphasia: Revistied and Revised". Brain. 123 (8): 1634–42. doi: 10.1093/brain/123.8.1634 . PMID   10908193.
  7. Browndyke, J.N. (2002). "Aphasia Assessment". Telepyschology Solutions. Retrieved 26 October 2011.
  8. Bruce E. Murdoch (2009). Acquired Speech and Language Disorders. New York: Wiley. pp. 4–16. ISBN   978-0-470-02567-3. OCLC   652484816.
  9. Arthur MacNeill Horton Jr EdD ABPP ABPN; Chad Noggle MD; Raymond Dean ABPP ABPN (2011). The Encyclopedia of Neuropsychological Disorders. New York: Springer Publishing Company. pp. 311–312. ISBN   978-0-8261-9854-9. OCLC   763157304.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. Otsuki, M.; Soma, Yoshiaki; Koyama, Akira; Yoshimura, Nahoko; Furukawa, Hiroko; Tsuji, Shoji (1998-01-01). "Transcortical sensory aphasia following left frontal infarction". Journal of Neurology. 245 (2): 69–76. doi:10.1007/s004150050180. ISSN   1432-1459. PMID   9507410. S2CID   28460964.
  11. 1 2 3 4 Pulvermüller, Friedemann; Berthier, Marcelo (2007). "Aphasia Therapy on a Neuroscience Basis". Aphasiology. 22 (6): 563–599. doi:10.1080/02687030701612213. PMC   2557073 . PMID   18923644.
  12. Pulvermüller F, Neininger B, Elbert T, et al. (July 2001). "Constraint-induced therapy of chronic aphasia after stroke". Stroke. 32 (7): 1621–6. doi: 10.1161/01.STR.32.7.1621 . PMID   11441210.
  13. Basso, Anna; Macis, Margherita (2011). "Therapy Efficacy in Chronic Aphasia". Behavioural Neurology. 24 (4): 317–325. doi: 10.1155/2011/313480 . PMC   5377972 . PMID   22063820.

Further reading