Triticeae glutens

Last updated
Wheat gluten flour Gluten Flour.PNG
Wheat gluten flour

Gluten is the seed storage protein in mature wheat seeds (and in the seeds of closely related species). It is the sticky substance in bread wheat which allows dough to rise and retain its shape during baking. The same, or very similar, proteins are also found in related grasses within the tribe Triticeae. Seed glutens of some non-Triticeae plants have similar properties, but none can perform on a par with those of the Triticeae taxa, particularly the Triticum species (bread wheat, durum wheat, etc.). What distinguishes bread wheat from these other grass seeds is the quantity of these proteins and the level of subcomponents, with bread wheat having the highest protein content and a complex mixture of proteins derived from three grass species ( Aegilops speltoides , Aegilops tauschii strangulata, and Triticum monococcum ).

Contents

Triticeae seed proteins fall into four groups: [1]

Of these proteins the last two, prolamin (in wheat – gliadin) and glutelin (in wheat – glutenin) form the classically defined gluten components in wheat.

Triticeae glutens are primarily important to a developing definition 'gluten-free' in dietary treatments for gluten sensitivity which are intended to exclude pathogenic proteins from the diet of susceptible individuals (such as coeliac disease, irritable bowel syndrome, or inflammatory bowel diseases). The poisonous motifs appear to be spread widely in Triticeae, but not other taxa, for most coeliacs. However all four proteins are involved in wheat allergies, and proteins from non-wheats may not be involved in certain gluten allergies, or in idiopathic sensitivities.

Prolamins and glutelins

Proteins of the Triticeae endosperm that are generally rich in arginine, proline, glutamine, and/or asparagine.

Genetics of prolamins and glutelins

Because of the usefulness of wheat glutens, genetic studies have largely focused on wheat genetics. Wheat has three genomes (AABBDD) and it can encode for many variations of the same protein, even in the gliadin subcategories many types of gliadin per cultivar, X = genome (A, B, or D genome chromosomes (1 to 7)). The A and B genomes are derived from wild emmers wheat which in turn is a natural digenomic species that contains a Triticum monococcum- and Aegilops speltoides-like genome. The D genome is derived from the extant species Aegilops tauschii strangulatum. [3]

Chromosome 1Chromosome 6
Short armLong armShort arm

(≈30 coding loci over A, B, D indeterminate alleles)

GluteninsHMWGlu-X1:

A >2 alleles, B >8 alleles, D >4 alleles

LMWGlu-X3:

A >5 alleles, B >7 alleles, D >2 alleles

Gliadinsα-gliadinGli-X2
β-gliadinfew - variants of γ-gliadin that

migrate with β-gliadins?

most – (Gli-X2) variants of α-gliadin

with alter isoelectric points

γ-gliadinmost - (Gli-X3)

homologous proteins exist in barley

ω-gliadinGli-X1:

A is null @ 84%, B >8 alleles, D >4 alleles

few – (Gli-X2) variants of α-gliadin

that migrate with γ-gliadins?

The genetic studies indicate that in wheat, each protein type can be encoded by several loci and several different alleles for each loci can be found in different genomes, allowing a great number of uniquely encoded isoforms.

Biochemistry of Triticeae prolamins and glutelins

Chemical behavior

As substrates for enzymes

Tissue transglutaminase Tissue transglutaminase.png
Tissue transglutaminase

Modification of glutamine

Prolamins and to a lesser degree glutelins are excellent substrates for deamidation particularly by mammalian tissue transglutaminases (tTG). Deamidation is a process in which the R-C0-NH2 portion of glutamines (or asparagine) is hydrolyzed to R-CO-OH forming glutamic acid or aspartic acid. In gliadin, the -QQP-, -QVP-, -QLP-, -QYP- tripeptides in the context of favorable adjacent peptides are readily deamidated. [5] Most proteins have few or no such transglutaminase sites; however alpha gliadin has 13 such sites. Human tissue transglutaminase not only deamidates gliadin, but it also crosslinks itself to gliadin, which has immunological consequences. Gliadin also has a small peptide that appears to alter the distribution of transglutaminase in the gut but is not crosslinked, the mechanism of its 'innate' behavior is not clear. tTG also crosslinks gliadin to other proteins via these sites, generating anti-food responses, anti-self protein responses, and self-crossreactive responses to food proteins that result in secondary autoimmunities. The role of tTG in the extracellular matrix is to crosslink lysine side chains of proteins such as collagen to proteins, however glutens appear to infiltrate into the small intestine, interfering with this process and resulting in a false immune recognition of the matrix and surrounding cells as foreign, leading, ultimately, to the destruction of the intestinal mucosa. Seeds of certain plants may elicit the innate and cellular responses as a defensive response to overconsumption of seeds.

Proteolysis

While prolamins and glutelins are excellent deamidase and transaminase substrates the highly repetitive motifs, particularly polyproline/glutamine tracts, are often poor substrates for gastrointestinal endoproteases, such as those produced in the GI tract. One clear example is a 33-mer of α-2 gliadin. Another digestion resistant region is a 25-mer which contains the innate peptide. [6] The alpha gliadins, which bear these sites, specifically are poisonous to young rats when fed at concentrations higher than 1% [7] and the addition of mannosidase inhibitors increases the sensitivity specifically to alpha gliadins. [8] These properties of certain alpha-gliadins appear to have evolved to prevent long-term or dedicated consumption of certain wheat grasses by certain species. This is one of the ironic properties of wheat, since a major advantage of wheat is the amount of protein in the wheat, however, some of this is wasted to the gut flora (or host immune system) since it cannot be broken down. One suggested remedy to this problem are new enzymes that help specifically break prolamins in the stomach. This may prevent the onset of wheat related disease in susceptible individuals, but no such screening is currently effective and once the clinical state is reached most individuals are so sensitive to wheat gliadins that, effectively, complete digestion in the stomach would be required.

Immunochemistry of Triticeae glutens

The immunochemistry of Triticeae is important in several autoimmune diseases (see section on Human Disease), gluten sensitivity and gluten allergy in general. It can be subdivided into innate responses (direct stimulation of immune system), Class II mediated presentation (HLA DQ), Class I mediated stimulation of killer cells, and Antibody recognition. The DQ restricted class II mediated presentation of gliadin to T-helper lymphocytes appears to be the primary process involved in coeliac disease.

History and food use of triticeae glutens

Glutens are an essential part of the modern food industry. The industry of wheat goes back to before the Neolithic period when people process grain berries (or corns) singly by hand. During the early phase of cultivation wheats were selected for their harvestability and growability under various climate conditions resulting in the first cultivars. This industry spread into many areas of western Eurasia during neolithization, carrying the more primitive cultivars. These grains were capable of being used for soups (speltoids) or tediously ground into simple flours and baked goods. During the second phase an Emmer wheat was produced that was an alloquadraploid species and this contained more gluten, making baking more efficient. This also spread during the neolithization but in places such cultivars were a minority. One variant of emmer wheat is called durum wheat and is the source of semolina flour, used in making pastas and other food pastes. Comparable varieties are found throughout Eurasia. Finally, emmers wheat was combined with a goat grass (Aegilops tauschii) to form allohexaploid bread wheat, which has a soft fine texture after rising and cooking. The industrial properties of this wheat are based in its glutens, glutens of high elasticity, high heat tolerance of other glutens or that change when subjected to heat to produce stronger polymers.

Comparing wheat gluten with corn (Zea) glutens

Corn is prepared by boiling in water with alkali then ground, resulting in a de-skinned material called nixtamalized masa. Masa can be used for tortillas, tamales, chips and other products, but it must be used quickly because its glutens change rapidly and binding decreases rapidly. Masa does not store well and chemicals are added to enhance preservation at the expense of quality. In contrast the glutens in wheat have more adhesive properties that change when prepared in different ways. The glutenins, for example, stretch, but can also fix their shape at high temperatures, causing bread to maintain its characteristic rise.

Important Triticeae composites

When the flour is combined with water and yeast the dough can be risen and subsequently fixed by heat resulting in a hard outer shell with a soft palatable interior. This makes bread amicable for both transport and preserves the bread for several days (in dry conditions). Barley can be sprouted for a short period and roasted, the resulting malt can be ground for food or combined with bread yeast (currently a brewers variety) to produce beer and distilled spirits such as whiskey, vodka and sourdough malts. Adding mild acid to rye flour activates it for bread making (Sourdough breads used in northern Europe).

Asian dumpling Jiaozi-close-look.jpg
Asian dumpling

Adding egg to T. durum semolina flour can be used to make pastas, or without egg a pasta variant used to make Chinese dumplings. Wheat or semolina flour can be added other ingredients such as fish, meat or milk to create food pastes. Wheat can be further processed to a very fine flour and sifted, alternatively the glutens either can be extracted and readded to other products. While many seed glutens and food gums when combined with food starch, come close to creating the refined products of wheat flour and durum flour, no combination has yet come close to the qualities of these flours at a comparable price.

Malted barley Sjb whiskey malt.jpg
Malted barley

Malting

Some triticeae cultivars, like barley, have relatively low protein values. This makes them more acceptable for brewing beer, where high-protein grains can lead to a proteinaceous "haze" or turbidity. Seed storage proteins in grass seeds (i.e., gluten in wheat) are designed to help the plant grow during its early life, and among the seed proteins are enzymes that convert starch to sugar.

Beer Lager beer in glass.jpg
Beer

These proteins are activated during sprouting and the starch around the endosperm is converted to sugars. Later the prolamins are broken down to provide the young seeds with a source of nitrogen and energy giving the Triticeae seedling a great boost during early life.

Once the starch is converted to sugar it can be readily fermented by Saccharomyces cerevisiae. However, first the sprouting process should be stopped. In order to do this, the partially sprouted grains are placed in a roasting oven and roasted until the sprouts are sterilized and dried. This process of sprouting and drying is called malting. Then the roasted sprouts are ground, rehydrated and fermented. This produces a crude beer.

Gluten deamidation

The deamidation potential for wheats is discussed above. Glutens are generated by the wheat starch industry. Glutens however are more difficult to handle once starch and other proteins are removed, for example, alcohol-soluble glutens cannot be mixed with dairy since the alcohol denatures and precipitates dairy proteins. Therefore, gluten is often modified for commercial use by deamidation by treatment with acid at high temperatures, or enzymatic treatment with deamidase or transglutaminases. The increased charge increases the hydrophilicity of gliadins, causing them to stretch out in solution. Deamidation of 20% of glutamine side chains to glutamate suffices to generate a soluble product. This renders gluten soluble enough without alcohol to mix with other products like milk.

Triticeae and human disease

Individuals who suffer from gluten-sensitive enteropathy/coeliac disease have an adverse reaction to the gluten in cultivars of Triticeae when eaten. [9] In addition to bread wheat, rye and barley (which have similar glutens) are known to cause symptoms in coeliacs. Between 2 and 10% of gluten sensitive individuals are also sensitive to oats, but it is not clear how much of this is due to contamination of triticeae seeds in oats or allergic responses (versus intolerance). Therefore, when broadly applied the designation of gluten-free applies to foods bearing the seed storage proteins derived from Triticeae.

Related Research Articles

<span class="mw-page-title-main">Gluten</span> Group of cereal grain proteins

Gluten is a structural protein naturally found in certain cereal grains. The term gluten usually refers to the elastic network of a wheat grain's proteins, gliadin and glutenin primarily, that forms readily with the addition of water and often kneading in the case of bread dough. The types of grains that contain gluten include all species of wheat, and barley, rye, and some cultivars of oat; moreover, cross hybrids of any of these cereal grains also contain gluten, e.g. triticale. Gluten makes up 75–85% of the total protein in bread wheat.

<span class="mw-page-title-main">Wheat</span> Genus of grass cultivated for grain

Wheat is a grass widely cultivated for its seed, a cereal grain that is a staple food around the world. The many species of wheat together make up the genus Triticum ; the most widely grown is common wheat. The archaeological record suggests that wheat was first cultivated in the regions of the Fertile Crescent around 9600 BC. Botanically, the wheat kernel is a caryopsis, a type of fruit.

<span class="mw-page-title-main">Bread</span> Food made of flour and water

Bread is a staple food prepared from a dough of flour and water, usually by baking. Throughout recorded history and around the world, it has been an important part of many cultures' diet. It is one of the oldest human-made foods, having been of significance since the dawn of agriculture, and plays an essential role in both religious rituals and secular culture.

<span class="mw-page-title-main">Coeliac disease</span> Autoimmune disorder that results in a reaction to gluten

Coeliac disease or celiac disease is a long-term autoimmune disorder, primarily affecting the small intestine, where individuals develop intolerance to gluten, present in foods such as wheat, rye and barley. Classic symptoms include gastrointestinal problems such as chronic diarrhoea, abdominal distention, malabsorption, loss of appetite, and among children failure to grow normally. Non-classic symptoms are more common, especially in people older than two years. There may be mild or absent gastrointestinal symptoms, a wide number of symptoms involving any part of the body, or no obvious symptoms. Coeliac disease was first described in childhood; however, it may develop at any age. It is associated with other autoimmune diseases, such as Type 1 diabetes mellitus and Hashimoto's thyroiditis, among others.

<span class="mw-page-title-main">Durum wheat</span> Species of wheat used for food

Durum wheat, also called pasta wheat or macaroni wheat, is a tetraploid species of wheat. It is the second most cultivated species of wheat after common wheat, although it represents only 5% to 8% of global wheat production. It was developed by artificial selection of the domesticated emmer wheat strains formerly grown in Central Europe and the Near East around 7000 BC, which developed a naked, free-threshing form. Like emmer, durum wheat is awned. It is the predominant wheat that grows in the Middle East.

<span class="mw-page-title-main">Gluten-free diet</span> Diet excluding proteins found in wheat, barley, and rye

A gluten-free diet (GFD) is a nutritional plan that strictly excludes gluten, which is a mixture of prolamin proteins found in wheat, as well as barley, rye, and oats. The inclusion of oats in a gluten-free diet remains controversial, and may depend on the oat cultivar and the frequent cross-contamination with other gluten-containing cereals.

<span class="mw-page-title-main">Spelt</span> Species of grain

Spelt, also known as dinkel wheat or hulled wheat, is a species of wheat. It is a relict crop, eaten in Central Europe and northern Spain. It is considered a health food since it is high in protein. It is comparable to farro.

Glutenin is a major protein within wheat flour, making up 47% of the total protein content. The glutenins are protein aggregates of high-molecular-mass (HMW) and low-molecular-mass (LMW) subunits with molar masses from about 200,000 to a few million, which are stabilized by intermolecular disulfide bonds, hydrophobic interactions and other forces. Glutenin is responsible for the strength and elasticity of dough.

<span class="mw-page-title-main">Gliadin</span> Protein in wheat & other cereals

Gliadin is a class of proteins present in wheat and several other cereals within the grass genus Triticum. Gliadins, which are a component of gluten, are essential for giving bread the ability to rise properly during baking. Gliadins and glutenins are the two main components of the gluten fraction of the wheat seed. This gluten is found in products such as wheat flour. Gluten is split about evenly between the gliadins and glutenins, although there are variations found in different sources.

<span class="mw-page-title-main">Whole grain</span> Cereal containing endosperm, germ, and bran

A whole grain is a grain of any cereal and pseudocereal that contains the endosperm, germ, and bran, in contrast to refined grains, which retain only the endosperm.

Hordein is a prolamin glycoprotein, present in barley and some other cereals, together with gliadin and other glycoproteins coming under the general name of gluten. Hordeins are found in the endosperm where one of their functions is to act as a storage unit.

Prolamins are a group of plant storage proteins having a high proline amino acid content. They are found in plants, mainly in the seeds of cereal grains such as wheat (gliadin), barley (hordein), rye (secalin), corn (zein), sorghum (kafirin), and oats (avenin). They are characterised by a high glutamine and proline content, and have poor solubility in water. They solubilise best in strong alcohol (70–80%), light acid, and alkaline solutions. The prolamins of the tribe Triticeae, such as wheat gliadin, and related proteins are known to trigger coeliac disease, an autoimmune condition, in genetically predisposed individuals.

<span class="mw-page-title-main">Wheat allergy</span> Medical condition

Wheat allergy is an allergy to wheat which typically presents itself as a food allergy, but can also be a contact allergy resulting from occupational exposure. Like all allergies, wheat allergy involves immunoglobulin E and mast cell response. Typically the allergy is limited to the seed storage proteins of wheat. Some reactions are restricted to wheat proteins, while others can react across many varieties of seeds and other plant tissues. Wheat allergy is rare. Prevalence in adults was estimated to be 0.21% in a 2012 study in Japan.

<span class="mw-page-title-main">Triticeae</span> Tribe of grasses

Triticeae is a botanical tribe within the subfamily Pooideae of grasses that includes genera with many domesticated species. Major crop genera found in this tribe include wheat, barley, and rye; crops in other genera include some for human consumption, and others used for animal feed or rangeland protection. Among the world's cultivated species, this tribe has some of the most complex genetic histories. An example is bread wheat, which contains the genomes of three species with only one being a wheat Triticum species. Seed storage proteins in the Triticeae are implicated in various food allergies and intolerances.

<span class="mw-page-title-main">Gluten-related disorders</span> Set of diseases caused by gluten exposure

Gluten-related disorders is the term for the diseases triggered by gluten, including celiac disease (CD), non-celiac gluten sensitivity (NCGS), gluten ataxia, dermatitis herpetiformis (DH) and wheat allergy. The umbrella category has also been referred to as gluten intolerance, though a multi-disciplinary physician-led study, based in part on the 2011 International Coeliac Disease Symposium, concluded that the use of this term should be avoided due to a lack of specificity.

Anti-gliadin antibodies are produced in response to gliadin, a prolamin found in wheat. In bread wheat it is encoded by three different alleles, AA, BB, and DD. These alleles can produce slightly different gliadins, which can cause the body to produce different antibodies. Some of these antibodies can detect proteins in specific grass taxa such as Triticeae, while others react sporadically with certain species in those taxa, or over many taxonomically defined grass tribes.

Glutelins are a class of prolamin proteins found in the endosperm of certain seeds of the grass family. They constitute a major component of the protein composite collectively referred to as gluten. Glutenin is the most common glutelin, as it is found in wheat and is responsible for some of the refined baking properties in bread wheat. The glutelins of barley and rye have also been identified. Glutelins are the primary protein form of energy storage in the endosperm of rice grains.

Oat sensitivity represents a sensitivity to the proteins found in oats, Avena sativa. Sensitivity to oats can manifest as a result of allergy to oat seed storage proteins either inhaled or ingested. A more complex condition affects individuals who have gluten-sensitive enteropathy in which there is an autoimmune response to avenin, the glutinous protein in oats similar to the gluten within wheat. Sensitivity to oat foods can also result from their frequent contamination by wheat, barley, or rye particles.

The immunochemistry of Triticeae glutens is important in several inflammatory diseases. It can be subdivided into innate responses, class II mediated presentation, class I mediated stimulation of killer cells, and antibody recognition. The responses to gluten proteins and polypeptide regions differs according to the type of gluten sensitivity. The response is also dependent on the genetic makeup of the human leukocyte antigen genes. In gluten sensitive enteropathy, there are four types of recognition, innate immunity, HLA-DQ, and antibody recognition of gliadin and transglutaminase. With idiopathic gluten sensitivity only antibody recognition to gliadin has been resolved. In wheat allergy, the response pathways are mediated through IgE against other wheat proteins and other forms of gliadin.

<span class="mw-page-title-main">Cupin superfamily</span>

The cupin superfamily is a diverse superfamily of proteins named after its conserved barrel domain. The superfamily includes a wide variety of enzymes as well as non-enzymatic seed storage proteins.

References

  1. It is the sticky, glue-like properties of glutens from this taxa that are most useful in the food production industry. Grass storage proteins – the Glutens.
  2. P. R. Shewry; J. M. Hill; H.M. Pratt; M.M. Leggatt; B.J. Miflin (1978). "An Evaluation of Techniques for the Extraction of Hordein and Glutelin from Barley Seed and a Comparison of the Protein Composition of Bomi and RisØ 1508". J. Exp. Bot. 29 (3): 677–692. doi:10.1093/jxb/29.3.677.
  3. Bromilow, S; Gethings, LA; Buckley, M; Bromley, M; Shewry, PR; Langridge, JI; Clare Mills, EN (23 June 2017). "A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods". Journal of Proteomics. 163: 67–75. doi: 10.1016/j.jprot.2017.03.026 . PMC   5479479 . PMID   28385663.
  4. Shang H, Wei Y, Long H, Yan Z, Zheng Y (2005). "Identification of LMW glutenin-like genes from Secale sylvestre host". Genetika. 41 (12): 1656–64. PMID   16396452.
  5. Mazzeo M, De Giulio B, Senger S, Rossi M, Malorni A, Siciliano R (2003). "Identification of transglutaminase-mediated deamidation sites in a recombinant alpha-gliadin by advanced mass-spectrometric methodologies". Protein Sci. 12 (11): 2434–42. doi:10.1110/ps.03185903. PMC   2366954 . PMID   14573857.
  6. Mamone G, Ferranti P, Rossi M, et al. (2007). "Identification of a peptide from alpha-gliadin resistant to digestive enzymes: Implications for celiac disease". Journal of Chromatography B. 855 (2): 236–41. doi:10.1016/j.jchromb.2007.05.009. PMID   17544966.
  7. Stĕpánková R, Tlaskalová-Hogenová H, Fric P, Trebichavský I (1989). "Enteropathy induced in young rats by feeding with gliadin--similarity with coeliac disease". Folia Biol. (Praha). 35 (1): 19–26. PMID   2653886.
  8. Köttgen E, Beiswenger M, James LF, Bauer C (1988). "In vivo induction of gliadin-mediated enterocyte damage in rats by the mannosidase inhibitor, swainsonine: a possible animal model for celiac disease". Gastroenterology. 95 (1): 100–6. doi: 10.1016/0016-5085(88)90296-x . PMID   3131176.
  9. Di Sabatino A, Corazza GR (April 2009). "Coeliac disease". Lancet. 373 (9673): 1480–93. doi:10.1016/S0140-6736(09)60254-3. PMID   19394538. S2CID   8415780.