UQCRC2

Last updated
UQCRC2
Identifiers
Aliases UQCRC2 , MC3DN5, QCR2, UQCR2, ubiquinol-cytochrome c reductase core protein II, ubiquinol-cytochrome c reductase core protein 2
External IDs OMIM: 191329 MGI: 1914253 HomoloGene: 37764 GeneCards: UQCRC2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_003366

NM_025899

RefSeq (protein)

NP_003357

NP_080175

Location (UCSC) Chr 16: 21.95 – 21.98 Mb Chr 7: 120.23 – 120.26 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Cytochrome b-c1 complex subunit 2, mitochondrial (UQCRC2), also known as QCR2, UQCR2, or MC3DN5 is a protein that in humans is encoded by the UQCRC2 gene. [5] The product of UQCRC2 is a subunit of the respiratory chain protein Ubiquinol Cytochrome c Reductase (UQCR, Complex III or Cytochrome bc1 complex), which consists of the products of one mitochondrially encoded gene, MTCYTB (mitochondrial cytochrome b) and ten nuclear genes: UQCRC1, UQCRC2, Cytochrome c1, UQCRFS1 (Rieske protein), UQCRB, "11kDa protein", UQCRH (cyt c1 Hinge protein), Rieske Protein presequence, "cyt. c1 associated protein", and "Rieske-associated protein." [6] [7] Defects in UQCRC2 are associated with mitochondrial complex III deficiency, nuclear, type 5. [5]

Contents

Structure

UQCRC2 is located on the p arm of chromosome 16 in position 12.2 and has 14 exons. [5] The UQCRC2 gene produces a 48.4 kDa protein composed of 453 amino acids. [8] [9] UQCRC2 belongs to the peptidase M16 family and UQCRC2/QCR2 subfamily. UQCRC2 has a transit peptide domain. Ubiquinol Cytochrome c Reductase (b-c1 complex) contains 11 subunits: 3 respiratory subunits (cytochrome b, cytochrome c1 and Rieske/UQCRFS1), 2 core proteins (UQCRC1/QCR1 and UQCRC2/QCR2) and 6 low-molecular weight proteins (UQCRH/QCR6, UQCRB/QCR7, UQCRQ/QCR8, UQCR10/QCR9, UQCR11/QCR10 and a cleavage product of Rieske/UQCRFS1). [10] [11] UQCRC2 is part of the hydrophobic core of the b-c1 complex and is necessary for the stabilization of Ubiquinol Cytochrome c Reductase. [12]

Function

The protein encoded by this gene is located in the mitochondrion, where it is part of the ubiquinol-cytochrome c reductase complex (also known as complex III). This complex constitutes a part of the mitochondrial respiratory chain. [5] The core protein UQCRC2 is required for the assembly and stabilization of the complex. [10] [11]

Clinical Significance

Variants of UQCRC2 have been associated with mitochondrial complex III deficiency, nuclear, type 5. [5] Mitochondrial complex III deficiency nuclear type 5 is a disorder of the mitochondrial respiratory chain resulting in a highly variable phenotype depending on which tissues are affected. Clinical features include mitochondrial encephalopathy, psychomotor retardation, ataxia, severe failure to thrive, liver dysfunction, renal tubulopathy, muscle weakness, exercise intolerance, lactic acidosis and hypoglycemia. Homozygous mutations resulting in a change from Arginine to Tryptophan at position 183 have been associated with mitochondrial complex III deficiency due to UQCRC2 dysfunction. Autosomal recessive inheritance has been proposed as a transmission pattern. [12] [13] [14]

Interactions

UQCRC2 has 98 protein-protein interactions with 90 of them being co-complex interactions. CAC1A, QCR1, UQCRC1, CACNA1A, STOM, a8k1f4, HLA-B, ARF6, and Mapk3 have been found to interact with UQCRC2. [10] [11] [15]

Related Research Articles

<span class="mw-page-title-main">Coenzyme Q – cytochrome c reductase</span> Class of enzymes

The coenzyme Q : cytochrome c – oxidoreductase, sometimes called the cytochrome bc1 complex, and at other times complex III, is the third complex in the electron transport chain, playing a critical role in biochemical generation of ATP. Complex III is a multisubunit transmembrane protein encoded by both the mitochondrial and the nuclear genomes. Complex III is present in the mitochondria of all animals and all aerobic eukaryotes and the inner membranes of most eubacteria. Mutations in Complex III cause exercise intolerance as well as multisystem disorders. The bc1 complex contains 11 subunits, 3 respiratory subunits, 2 core proteins and 6 low-molecular weight proteins.

<span class="mw-page-title-main">Rieske protein</span> Protein family with an iron–sulfur center transferring electrons

Rieske proteins are iron–sulfur protein (ISP) components of cytochrome bc1 complexes and cytochrome b6f complexes and are responsible for electron transfer in some biological systems. John S. Rieske and co-workers first discovered the protein and in 1964 isolated an acetylated form of the bovine mitochondrial protein. In 1979 Trumpower's lab isolated the "oxidation factor" from bovine mitochondria and showed it was a reconstitutively-active form of the Rieske iron-sulfur protein
It is a unique [2Fe-2S] cluster in that one of the two Fe atoms is coordinated by two histidine residues rather than two cysteine residues. They have since been found in plants, animals, and bacteria with widely ranging electron reduction potentials from -150 to +400 mV.

<span class="mw-page-title-main">Cytochrome b</span> Mitochondrial protein involved in the respiratory chain

Cytochrome b within both molecular and cell biology, is a protein found in the mitochondria of eukaryotic cells. It functions as part of the electron transport chain and is the main subunit of transmembrane cytochrome bc1 and b6f complexes.

<span class="mw-page-title-main">Cytochrome c oxidase subunit 2</span> Enzyme of the respiratory chain encoded by the mitochondrial genome

Cytochrome c oxidase II is a protein in eukaryotes that is encoded by the MT-CO2 gene. Cytochrome c oxidase subunit II, abbreviated COXII, COX2, COII, or MT-CO2, is the second subunit of cytochrome c oxidase. It is also one of the three mitochondrial DNA (mtDNA) encoded subunits of respiratory complex IV.

<span class="mw-page-title-main">Cytochrome c oxidase subunit III</span> Enzyme of the respiratory chain encoded by the mitochondrial genome

Cytochrome c oxidase subunit III (COX3) is an enzyme that in humans is encoded by the MT-CO3 gene. It is one of main transmembrane subunits of cytochrome c oxidase. It is also one of the three mitochondrial DNA (mtDNA) encoded subunits of respiratory complex IV. Variants of it have been associated with isolated myopathy, severe encephalomyopathy, Leber hereditary optic neuropathy, mitochondrial complex IV deficiency, and recurrent myoglobinuria.

<span class="mw-page-title-main">MT-CYB</span> A mitochondrial protein-coding gene whose product is involved in the respiratory chain

Cytochrome b is a protein that in humans is encoded by the MT-CYB gene. Its gene product is a subunit of the respiratory chain protein ubiquinol–cytochrome c reductase, which consists of the products of one mitochondrially encoded gene, MT-CYB, and ten nuclear genes—UQCRC1, UQCRC2, CYC1, UQCRFS1, UQCRB, "11kDa protein", UQCRH, Rieske protein presequence, "cyt c1 associated protein", and Rieske-associated protein.

<span class="mw-page-title-main">CYC1</span> Protein-coding gene in the species Homo sapiens

Cytochrome c1, heme protein, mitochondrial (CYC1), also known as UQCR4, MC3DN6, Complex III subunit 4, Cytochrome b-c1 complex subunit 4, or Ubiquinol-cytochrome-c reductase complex cytochrome c1 subunit is a protein that in humans is encoded by the CYC1 gene. CYC1 is a respiratory subunit of Ubiquinol Cytochrome c Reductase, which is located in the inner mitochondrial membrane and is part of the electron transport chain. Mutations in this gene may cause mitochondrial complex III deficiency, nuclear, type 6.

<span class="mw-page-title-main">UQCRC1</span> Protein-coding gene in the species Homo sapiens

Cytochrome b-c1 complex subunit 1, mitochondrial is a protein that in humans is encoded by the UQCRC1 gene.

<span class="mw-page-title-main">BCS1L</span> Protein-coding gene in the species Homo sapiens

Mitochondrial chaperone BCS1 (BCS1L), also known as BCS1 homolog, ubiquinol-cytochrome c reductase complex chaperone (h-BCS1), is a protein that in humans is encoded by the BCS1L gene. BCS1L is a chaperone protein involved in the assembly of Ubiquinol Cytochrome c Reductase, which is located in the inner mitochondrial membrane and is part of the electron transport chain. Mutations in this gene are associated with mitochondrial complex III deficiency, GRACILE syndrome, and Bjoernstad syndrome.

<span class="mw-page-title-main">UCRC</span> Protein-coding gene in the species Homo sapiens

Ubiquinol-cytochrome c reductase complex , also known as UCRC or UQCR10, is a human gene.

<span class="mw-page-title-main">UQCRB</span> Protein

Ubiquinol-cytochrome c reductase binding protein, also known as UQCRB, Complex III subunit 7, QP-C, or Ubiquinol-cytochrome c reductase complex 14 kDa protein is a protein which in humans is encoded by the UQCRB gene. This gene encodes a subunit of the ubiquinol-cytochrome c oxidoreductase complex, which consists of one mitochondrial-encoded and 10 nuclear-encoded subunits. Mutations in this gene are associated with mitochondrial complex III deficiency. Alternatively spliced transcript variants have been found for this gene. Related pseudogenes have been identified on chromosomes 1, 5 and X.

<span class="mw-page-title-main">UQCRFS1</span> Protein-coding gene in the species Homo sapiens

Ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, also known as UQCRFS1, Rieske iron-sulfur (Fe-S) protein, Cytochrome b-c1 complex subunit 5, or Complex III subunit 5 is a protein which in humans is encoded by the UQCRFS1 gene. UQCRFS1 is a subunit of the respiratory chain protein Ubiquinol Cytochrome c Reductase, which consists of the products of one mitochondrially encoded gene, MTCYTB and ten nuclear genes UQCRC1, UQCRC2, Cytochrome C1, UQCRFS1, UQCRB,UQCRQ, UQCRH, UCRC, and UQCR.

<span class="mw-page-title-main">UQCRH</span> Protein-coding gene in the species Homo sapiens

Cytochrome b-c1 complex subunit 6, mitochondrial is a protein that in humans is encoded by the UQCRH gene.

<span class="mw-page-title-main">UQCR11</span> Protein-coding gene in the species Homo sapiens

UQCR11 is a protein that in humans is encoded by the UQCR11 gene. UQCR11 is the smallest known component of Complex III in the mitochondrial respiratory chain.

<span class="mw-page-title-main">UQCRQ</span> Protein-coding gene in the species Homo sapiens

Ubiquinol-cytochrome c reductase, complex III subunit VII, 9.5kDa is a protein that in humans is encoded by the UQCRQ gene. This ubiqinone-binding protein is a subunit of mitochondrial Complex III in the electron transport chain. A mutation in the UQCRQ gene has been shown to cause severe neurological disorders. Infection by Trypanosoma cruzi can cause oxidative modification of this protein in cardiac muscle tissue.

Tetratricopeptide repeat domain 19, also known as TPR repeat protein 19 or Tetratricopeptide repeat protein 19, mitochondrial is a protein that in humans is encoded by the TTC19 gene. This gene encodes a protein with a tetratricopeptide repeat (TPR) domain containing several TPRs of about 34 amino acids each. These repeats are found in a variety of organisms including bacteria, fungi and plants, and are involved in a variety of functions including protein-protein interactions. This protein is embedded in the inner mitochondrial membrane and is involved in the formation of the mitochondrial respiratory chain III. It has also been suggested that this protein plays a role in cytokinesis. Mutations in this gene cause mitochondrial complex III deficiency. Alternatively spliced transcript variants have been found for this gene.

<span class="mw-page-title-main">UQCC2</span> Protein-coding gene in the species Homo sapiens

Ubiquinol-cytochrome c reductase complex assembly factor 2 is a protein that in humans is encoded by the UQCC2 gene. Located in the mitochondrial nucleoid, this protein is a complex III assembly factor, playing a role in cytochrome b biogenesis along with the UQCC1 protein. It regulates insulin secretion and mitochondrial ATP production and oxygen consumption. In the sole recorded case, a mutation in the UQCC2 gene caused Complex III deficiency, characterized by intrauterine growth retardation, neonatal lactic acidosis, and renal tubular dysfunction.

LYR motif containing 7, also known as Complex III assembly factor LYRM7 or LYR motif-containing protein 7 is a protein that in humans is encoded by the LYRM7 gene. The protein encoded by this gene is a nuclear-encoded mitochondrial matrix protein that stabilizes UQCRFS1 and chaperones it to the CIII complex. Defects in this gene are a cause of mitochondrial complex III deficiency, nuclear type 8. Three transcript variants encoding two different isoforms have been found for this gene.

<span class="mw-page-title-main">UQCC3</span> Protein-coding gene in the species Homo sapiens

(See also: List of proteins in the human body)

<span class="mw-page-title-main">COX14</span> Protein-coding gene in the species Homo sapiens

Cytochrome c oxidase assembly factor COX14 is a protein that in humans is encoded by the COX14 gene. This gene encodes a small single-pass transmembrane protein that localizes to mitochondria. This protein may play a role in coordinating the early steps of cytochrome c oxidase subunit assembly and, in particular, the synthesis and assembly of the COX I subunit of the holoenzyme. Mutations in this gene have been associated with mitochondrial complex IV deficiency. Alternative splicing results in multiple transcript variants.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000140740 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030884 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 4 5 "Entrez Gene: UQCRC2 ubiquinol-cytochrome c reductase core protein II".
  6. Duncan AM, Ozawa T, Suzuki H, Rozen R (November 1993). "Assignment of the gene for the core protein II (UQCRC2) subunit of the mitochondrial cytochrome bc1 complex to human chromosome 16p12". Genomics. 18 (2): 455–6. doi:10.1006/geno.1993.1500. PMID   8288258.
  7. Hosokawa Y, Suzuki H, Toda H, Nishikimi M, Ozawa T (August 1989). "Complementary DNA encoding core protein II of human mitochondrial cytochrome bc1 complex. Substantial diversity in deduced primary structure from its yeast counterpart". The Journal of Biological Chemistry. 264 (23): 13483–8. doi: 10.1016/S0021-9258(18)80022-9 . PMID   2547763.
  8. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC   4076475 . PMID   23965338.
  9. Yao, Daniel. "Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) —— Protein Information". amino.heartproteome.org. Retrieved 2018-07-30.
  10. 1 2 3 "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC   5210571 . PMID   27899622.
  11. 1 2 3 "UQCRC2 - Cytochrome b-c1 complex subunit 2, mitochondrial precursor - Homo sapiens (Human) - UQCRC2 gene & protein". www.uniprot.org. Retrieved 2018-07-30.
  12. 1 2 Online Mendelian Inheritance in Man (OMIM): 615160
  13. Miyake N, Yano S, Sakai C, Hatakeyama H, Matsushima Y, Shiina M, Watanabe Y, Bartley J, Abdenur JE, Wang RY, Chang R, Tsurusaki Y, Doi H, Nakashima M, Saitsu H, Ogata K, Goto Y, Matsumoto N (March 2013). "Mitochondrial complex III deficiency caused by a homozygous UQCRC2 mutation presenting with neonatal-onset recurrent metabolic decompensation". Human Mutation. 34 (3): 446–52. doi: 10.1002/humu.22257 . PMID   23281071. S2CID   21652222.
  14. Gaignard P, Eyer D, Lebigot E, Oliveira C, Therond P, Boutron A, Slama A (July 2017). "UQCRC2 mutation in a patient with mitochondrial complex III deficiency causing recurrent liver failure, lactic acidosis and hypoglycemia". Journal of Human Genetics. 62 (7): 729–731. doi:10.1038/jhg.2017.22. PMID   28275242. S2CID   4343047.
  15. "113 binary interactions found for search term UQCRC2". IntAct Molecular Interaction Database. EMBL-EBI. Retrieved 2018-08-25.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.