Ultrasound computer tomography | |
---|---|
Purpose | use for soft tissue medical imaging |
Ultrasound computer tomography (USCT), sometimes also Ultrasound computed tomography, Ultrasound computerized tomography [1] or just Ultrasound tomography, [2] is a form of medical ultrasound tomography utilizing ultrasound waves as physical phenomenon for imaging. It is mostly in use for soft tissue medical imaging, especially breast imaging. [2] [3] [4]
Ultrasound computer tomographs use ultrasound waves to create images. In the first measurement step, a defined ultrasound wave is generated with typically Piezoelectric ultrasound transducers, transmitted in direction of the measurement object and received with other or the same ultrasound transducers. While traversing and interacting with the object the ultrasound wave is changed by the object and carries now information about the object. After being recorded the information from the modulated waves can be extracted and used to create an image of the object in a second step. Unlike X-ray or other physical properties which provide typically only one information, ultrasound provides multiple information of the object for imaging: the attenuation the wave's sound pressure experiences indicate on the object's attenuation coefficient, the time-of-flight of the wave gives speed of sound information, and the scattered wave indicates on the echogenicity of the object (e.g. refraction index, surface morphology, etc.). Unlike conventional ultrasound sonography, which uses phased array technology for beamforming, most USCT systems utilize unfocused spherical waves for imaging. Most USCT systems aiming for 3D-imaging, either by synthesizing ("stacking") 2D images or by full 3D aperture setups. Another aim is quantitative imaging instead of only qualitative imaging.
The idea of Ultrasound computer tomography goes back to the 1950s with analogue compounding setups, [5] [6] [7] in the mid 1970s the first "computed" USCT systems were built up, utilizing digital technology. [8] The "computer" in the USCT concept indicates the heavy reliance on computational intensive advanced digital signal processing, image reconstruction and image processing algorithms for imaging. Successfully realization of USCT systems in the last decades was possible through the continuously growing availability of computing power and data bandwidth provided by the digital revolution.
USCT systems designed for medical imaging of soft tissue typically aim for resolution in the order of centimeters to millimeters and require therefore ultrasound waves in the order of mega-hertz frequency. This requires typically water as low-attenuating transmission medium between ultrasound transducers and object to retain suitable sound pressures. [1]
USCT systems share with the common tomography the fundamental architectural similarity that the aperture, the active imaging elements, surround the object. For the distribution of ultrasound transducers around the measurement object, forming the aperture, multiple design approaches exist. There exist mono-, bi- and multistatic setups of transducer configurations. Common are 1D- or 2D- linear arrays of ultrasound transducers acting as emitters on one side of the object, on the opposing side of the object a similar array acting as receiver is placed, forming a parallel setup. Sometimes accompanied by the additional ability to be moved to gather more information from additional angles. While cost-efficient to build the main disadvantage of such a setup is the limited ability (or inability) of gathering reflectivity information, as such an aperture is limited to only transmission information. Another aperture approach is a ring of transducers, [9] sometimes with the degree of freedom of motorized lifting for gathering additional information over the height for 3D imaging ("stacking"). Full 3D setups, with no inherent need for aperture movements, exist in the form of apertures formed by semi-spherical distributed transducers. While the most expensive setup they offer the advantage of nearly-uniform data, gathered from many directions. Also, they are fast in data taking as they don't require time-costly mechanical movements.
This article may be a rough translation from Japanese. It may have been generated, in whole or in part, by a computer or by a translator without dual proficiency.(August 2022) |
Tomographic reconstruction methods used in USCT systems for transmission information based imaging are classical inverse radon transform and fourier slice theorem and derived algorithms (cone beam etc.). As advanced alternatives, ART-based approaches are also utilized. For high-resolution and speckle noise reduced reflectivity imaging Synthetic Aperture Focusing Techniques (SAFT), similar to radar's SAR and sonar's SAS, are widely used. Iterative wave equation inversion approaches as imaging method coming from the seismology are under academic research, but usage for real world applications is due to the enormous computational and memory burden still a challenge. [10]
Many USCT systems are designed for soft tissue imaging and for breast cancer diagnosis specifically. [2] [3] [4] As an ultrasound-based method with low sound pressures, USCT is a harmless and risk-free imaging method, suitable for periodical screening. As USCT setups are fixed or motor moved without direct contact with the breast the reproduction of images is easier as with common, manually guided methods (e.g. Breast ultrasound) which rely on the individual examiners' performance and experience. In comparison with conventional screening methods like mammography, USCT systems offer potentially an increased specificity for breast cancer detection, as multiple breast cancer characteristic properties are imaged at the same time: speed-of-sound, attenuation and morphology. [11]
Ultrasound is sound with frequencies greater than 20 kilohertz. This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.
Medical ultrasound includes diagnostic techniques using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics or to generate an informative audible sound. The usage of ultrasound to produce visual images for medicine is called medical ultrasonography or simply sonography, or echography. The practice of examining pregnant women using ultrasound is called obstetric ultrasonography, and was an early development of clinical ultrasonography. The machine used is called an ultrasound machine, a sonograph or an echograph. The visual image formed using this technique is called an ultrasonogram, a sonogram or an echogram.
Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities. Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are usually considered part of pathology instead of medical imaging.
Elastography is any of a class of medical imaging modalities that map the elastic properties and stiffness of soft tissue. The main idea is that whether the tissue is hard or soft will give diagnostic information about the presence or status of disease. For example, cancerous tumours will often be harder than the surrounding tissue, and diseased livers are stiffer than healthy ones.
Avinash C. Kak is a professor of Electrical and Computer Engineering at Purdue University who has conducted pioneering research in several areas of information processing. His most noteworthy contributions deal with algorithms, languages, and systems related to networks, robotics, and computer vision. Born in Srinagar, Kashmir, he did his Bachelors in BE at University of Madras and Phd in Indian Institute of Technology Delhi. He joined the faculty of Purdue University in 1971.
Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram.
Tomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon. A notable example of applications is the reconstruction of computed tomography (CT) where cross-sectional images of patients are obtained in non-invasive manner. Recent developments have seen the Radon transform and its inverse used for tasks related to realistic object insertion required for testing and evaluating computed tomography use in airport security.
Photoacoustic imaging or optoacoustic imaging is a biomedical imaging modality based on the photoacoustic effect. Non-ionizing laser pulses are delivered into biological tissues and part of the energy will be absorbed and converted into heat, leading to transient thermoelastic expansion and thus wideband ultrasonic emission. The generated ultrasonic waves are detected by ultrasonic transducers and then analyzed to produce images. It is known that optical absorption is closely associated with physiological properties, such as hemoglobin concentration and oxygen saturation. As a result, the magnitude of the ultrasonic emission, which is proportional to the local energy deposition, reveals physiologically specific optical absorption contrast. 2D or 3D images of the targeted areas can then be formed.
High-intensity focused ultrasound (HIFU), or MR-guided Focused Ultrasound Surgery is an incision-less therapeutic technique that uses non-ionizing ultrasonic waves to heat or ablate tissue. HIFU can be used to increase the flow of blood or lymph or to destroy tissue, such as tumors, via thermal and mechanical mechanisms. Given the prevalence and relatively low cost of ultrasound generation mechanisms, the premise of HIFU is that it is expected to be a non-invasive and low-cost therapy that can at least outperform care in the operating room.
A scanning acoustic microscope (SAM) is a device which uses focused sound to investigate, measure, or image an object. It is commonly used in failure analysis and non-destructive evaluation. It also has applications in biological and medical research. The semiconductor industry has found the SAM useful in detecting voids, cracks, and delaminations within microelectronic packages.
Acoustic microscopy is microscopy that employs very high or ultra high frequency ultrasound. Acoustic microscopes operate non-destructively and penetrate most solid materials to make visible images of internal features, including defects such as cracks, delaminations and voids.
Thermoacoustic imaging was originally proposed by Theodore Bowen in 1981 as a strategy for studying the absorption properties of human tissue using virtually any kind of electromagnetic radiation. But Alexander Graham Bell first reported the physical principle upon which thermoacoustic imaging is based a century earlier. He observed that audible sound could be created by illuminating an intermittent beam of sunlight onto a rubber sheet. Shortly after Bowen's work was published, other researchers proposed methodology for thermoacoustic imaging using microwaves. In 1994 researchers used an infrared laser to produce the first thermoacoustic images of near-infrared optical absorption in a tissue-mimicking phantom, albeit in two dimensions (2D). In 1995 other researchers formulated a general reconstruction algorithm by which 2D thermoacoustic images could be computed from their "projections," i.e. thermoacoustic computed tomography (TCT). By 1998 researchers at Indiana University Medical Center extended TCT to 3D and employed pulsed microwaves to produce the first fully three-dimensional (3D) thermoacoustic images of biologic tissue [an excised lamb kidney ]. The following year they created the first fully 3D thermoacoustic images of cancer in the human breast, again using pulsed microwaves. Since that time, thermoacoustic imaging has gained widespread popularity in research institutions worldwide. As of 2008, three companies were developing commercial thermoacoustic imaging systems – Seno Medical, Endra, Inc. and OptoSonics, Inc.
Ultrasound transmission tomography (UTT) is a form of tomography involving ultrasound.
Ultrasound-modulated optical tomography (UOT), also known as Acousto-Optic Tomography (AOT), is a hybrid imaging modality that combines light and sound; it is a form of tomography involving ultrasound. It is used in imaging of biological soft tissues and has potential applications for early cancer detection. As a hybrid modality which uses both light and sound, UOT provides some of the best features of both: the use of light provides strong contrast and sensitivity ; these two features are derived from the optical component of UOT. The use of ultrasound allows for high resolution, as well as a high imaging depth. However, the difficulty of tackling the two fundamental problems with UOT have caused UOT to evolve relatively slowly; most work in the field is limited to theoretical simulations or phantom / sample studies.
Multi-spectral optoacoustic tomography (MSOT), also known as functional photoacoustic tomography (fPAT), is an imaging technology that generates high-resolution optical images in scattering media, including biological tissues. MSOT illuminates tissue with light of transient energy, typically light pulses lasting 1-100 nanoseconds. The tissue absorbs the light pulses, and as a result undergoes thermo-elastic expansion, a phenomenon known as the optoacoustic or photoacoustic effect. This expansion gives rise to ultrasound waves (photoechoes) that are detected and formed into an image. Image formation can be done by means of hardware or computed tomography. Unlike other types of optoacoustic imaging, MSOT involves illuminating the sample with multiple wavelengths, allowing it to detect ultrasound waves emitted by different photoabsorbing molecules in the tissue, whether endogenous or exogenous. Computational techniques such as spectral unmixing deconvolute the ultrasound waves emitted by these different absorbers, allowing each emitter to be visualized separately in the target tissue. In this way, MSOT can allow visualization of hemoglobin concentration and tissue oxygenation or hypoxia. Unlike other optical imaging methods, MSOT is unaffected by photon scattering and thus can provide high-resolution optical images deep inside biological tissues.
Synthetic aperture ultrasound (SAU) imaging is an advanced form of imaging technology used to form high-resolution images in biomedical ultrasound systems. Ultrasound imaging has become an important and popular medical imaging method, as it is safer and more economical than computer tomography (CT) and magnetic resonance imaging (MRI).
X-ray computed tomography operates by using an X-ray generator that rotates around the object; X-ray detectors are positioned on the opposite side of the circle from the X-ray source.
Photoacoustic microscopy is an imaging method based on the photoacoustic effect and is a subset of photoacoustic tomography. Photoacoustic microscopy takes advantage of the local temperature rise that occurs as a result of light absorption in tissue. Using a nanosecond pulsed laser beam, tissues undergo thermoelastic expansion, resulting in the release of a wide-band acoustic wave that can be detected using a high-frequency ultrasound transducer. Since ultrasonic scattering in tissue is weaker than optical scattering, photoacoustic microscopy is capable of achieving high-resolution images at greater depths than conventional microscopy methods. Furthermore, photoacoustic microscopy is especially useful in the field of biomedical imaging due to its scalability. By adjusting the optical and acoustic foci, lateral resolution may be optimized for the desired imaging depth.
Functional ultrasound imaging (fUS) is a medical ultrasound imaging technique of detecting or measuring changes in neural activities or metabolism, for example, the loci of brain activity, typically through measuring blood flow or hemodynamic changes. The method can be seen as an extension of Doppler imaging.
A specific branch of contrast-enhanced ultrasound, acoustic angiography is a minimally invasive and non-ionizing medical imaging technique used to visualize vasculature. Acoustic angiography was first developed by the Dayton Laboratory at North Carolina State University and provides a safe, portable, and inexpensive alternative to the most common methods of angiography such as Magnetic Resonance Angiography and Computed Tomography Angiography. Although ultrasound does not traditionally exhibit the high resolution of MRI or CT, high-frequency ultrasound (HFU) achieves relatively high resolution by sacrificing some penetration depth. HFU typically uses waves between 20 and 100 MHz and achieves resolution of 16-80μm at depths of 3-12mm. Although HFU has exhibited adequate resolution to monitor things like tumor growth in the skin layers, on its own it lacks the depth and contrast necessary for imaging blood vessels. Acoustic angiography overcomes the weaknesses of HFU by combining contrast-enhanced ultrasound with the use of a dual-element ultrasound transducer to achieve high resolution visualization of blood vessels at relatively deep penetration levels.
The first such tomograms were made by Greenleaf et al. [Gre74], [Gre75], followed by Carson et al. [Car76], Jackowatz and Kak [Jak76], and Glover and Sharp [Glo77].