Vitelline membrane | |
---|---|
Details | |
Identifiers | |
Latin | membrana vitellina |
MeSH | D014817 |
Anatomical terminology |
The vitelline membrane or vitelline envelope is a structure surrounding the outer surface of the plasma membrane of an ovum (the oolemma) or, in some animals (e.g., birds), the extracellular yolk and the oolemma. It is composed mostly of protein fibers, with protein receptors needed for sperm binding which, in turn, are bound to sperm plasma membrane receptors. The species-specificity between these receptors contributes to prevention of breeding between different species. It is called zona pellucida in mammals. Between the vitelline membrane and the oolemma (ovum cell membrane) is a fluid-filled perivitelline space.
As soon as the spermatozoon fuses with the ovum, signal transduction occurs, resulting in an increase of cytoplasmic calcium ions. This itself triggers the cortical reaction, which results in depositing several substances onto the vitelline membrane through exocytosis of the cortical granules, transforming it into a hard layer called the “fertilization membrane”, which serves as a barrier inaccessible to other spermatozoa. This phenomenon is the slow block to polyspermy.
In insects, the vitelline membrane is called the vitelline envelope and is the inner lining of the chorion.
The vitelline membrane of the hen is made of two main protein layers that provide support for the yolk and separation from the albumen. The inner layer is known as the perivitelline lamina. [1] It is a single layer that measures roughly 1 μm to 3.5 μm thick and is mainly composed of five glycoproteins that have been discovered to resemble glycoproteins of the zona pellucida in mammals involved in maintaining structure (ZP domain proteins). The outer layer, known as the extravitelline lamina, has multiple sublayers which results in thickness that ranges from 0.3 μm to 9 μm. It is primarily composed of proteins, such as lysozyme, ovomucin and vitelline outer membrane proteins that are responsible for constructing the network of dense, thin protein fibres that establish the foundation for further growth of the outer layer during embryonic development. [2] Taking a wider view, ZP domain proteins are found in the vitelline membrane of chordates (which contains the vertebrates) in general. [3]
The vitelline membrane is known to function as a barrier that allows for diffusion of water and selective nutrients between the albumen and the yolk. [4]
Teleost fish have no acrosome on their sperm cells. Their eggs coats have a small opening that lets a single sperm through. [3]
Although molluscs are not closely related to chordates, they too have ZP domain proteins in the vitelline envelope. Those recognize sperm lysin. [3]
Insect egg coat is made of structual proteins, but these proteins are not related to the ZP proteins. [3]
In the adult hen, liver cells express the proteins required for initial formation of the inner layer. These proteins travel via the blood from the liver to the site of assembly in the ovary. [2] Before ovulation occurs, the inner layer forms from follicular cells that surround the oocyte. After ovulation, fertilization of the egg proceeds with the formation of the outer layer that is secreted by infundibulum glands located along the first parts of the oviduct. [1]
After the sperm digests its way through the jelly layer, the acrosomal process of the sperm makes contact with the vitelline envelope. The vitelline envelope has glycoproteins and peptides that allow for species-specific sperm binding and recognition. [5] For example, in the sea urchin species, red sea urchin and purple sea urchin, the vitelline membrane has bindin receptors for the bindin protein present on the sperm head. In the African clawed frog, it was found that the gp69/gp64 glycoprotein pair is involved in sperm recognition and binding. [6]
The vitelline membrane serves a different purpose in chickens. In the chicken egg, the yolk is separated from the albumen by the vitelline membrane which acts as a barrier to microbial infection. [7] Apart from the 13 proteins identified [4] to make up the membrane, the proteins that are key to providing antimicrobial properties to the membrane are the vitelline outer membrane proteins (VMO) 1 [8] and 2. [7] A recent study reports that VMO 1 can be a potential diagnostic marker for ovarian cancer in hens due to its ability to regulate estrogen and target microRNAs in the chickens' oviduct. [8] Another difference is that the vitelline membrane has two major layers: the inner layer that faces the yolk, intermediary and external outer layer that contacts the albumen. [8]
In sea urchins, the formation of the vitelline membrane comes directly after fertilization and later thickens to form the fertilization membrane. This process is completed in about a minute. [9] The innermost membrane of all animal eggs except some cnidarians is called the vitelline membrane. Some invertebrates and some lower chordate eggs are covered by this membrane only, while most have other membranes. [10] Frog and bird eggs have a very thin vitelline membrane which are surrounded by either a jelly layer (frogs) or other membranes (birds). In mammals, the structure is called the zona pellucida and is surrounded by a layer of support cells, called the corona radiata. [11]
A spermatozoon is a motile sperm cell produced by male animals relying on internal fertilization. A spermatozoon is a moving form of the haploid cell that is the male gamete that joins with an ovum to form a zygote.
Fertilisation or fertilization, also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a zygote and initiate its development into a new individual organism or offspring. While processes such as insemination or pollination, which happen before the fusion of gametes, are also sometimes informally referred to as fertilisation, these are technically separate processes. The cycle of fertilisation and development of new individuals is called sexual reproduction. During double fertilisation in angiosperms, the haploid male gamete combines with two haploid polar nuclei to form a triploid primary endosperm nucleus by the process of vegetative fertilisation.
For fertilization to happen between a sperm and egg cell, a sperm must first fuse with the plasma membrane and then penetrate the female egg cell to fertilize it. While the fusion of the sperm cell with the egg cell's plasma membrane is relatively straightforward, penetrating the egg's protective layers, such as the zona pellucida, presents a significant challenge. Therefore, sperm cells go through a process known as the acrosome reaction, which is the reaction that occurs in the acrosome of the sperm as it approaches the egg.
The zona pellucida is the specialized area surrounding mammalian oocytes (eggs). It is also known as an egg coat. The zona pellucida is essential for oocyte growth and fertilization.
In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm cell (spermatozoon). Once fertilized, the ovum becomes a single diploid cell known as a zygote. The zygote undergoes mitotic divisions with no significant growth and cellular differentiation, leading to development of a multicellular embryo after passing through an organizational checkpoint during mid-embryogenesis. In mammals, the term refers chiefly to the early stages of prenatal development, whereas the terms fetus and fetal development describe later stages.
Human fertilization is the union of an egg and sperm, occurring primarily in the ampulla of the fallopian tube. The result of this union leads to the production of a fertilized egg called a zygote, initiating embryonic development. Scientists discovered the dynamics of human fertilization in the 19th century.
In biology, polyspermy describes the fertilization of an egg by more than one sperm. Diploid organisms normally contain two copies of each chromosome, one from each parent. The cell resulting from polyspermy, on the other hand, contains three or more copies of each chromosome—one from the egg and one each from multiple sperm. Usually, the result is an unviable zygote. This may occur because sperm are too efficient at reaching and fertilizing eggs due to the selective pressures of sperm competition. Such a situation is often deleterious to the female: in other words, the male–male competition among sperm spills over to create sexual conflict.
The cortical reaction is a process initiated during fertilization that prevents polyspermy, the fusion of multiple sperm with one egg. In contrast to the fast block of polyspermy which immediately but temporarily blocks additional sperm from fertilizing the egg, the cortical reaction gradually establishes a permanent barrier to sperm entry and functions as the main part of the slow block of polyspermy in many animals.
The corona radiata is the innermost layer of the cells of the cumulus oophorus and is directly adjacent to the zona pellucida, the inner protective glycoprotein layer of the ovum. Cumulus oophorus are the cells surrounding corona radiata, and are the cells between corona radiata and follicular antrum. Its main purpose in many animals is to supply vital proteins to the cell. It is formed by follicle cells adhering to the oocyte before it leaves the ovarian follicle, and originates from the squamous granulosa cells present at the primordial stage of follicular development. The corona radiata is formed when the granulosa cells enlarge and become cuboidal, which occurs during the transition from the primordial to primary stage. These cuboidal granulosa cells, also known as the granulosa radiata, form more layers throughout the maturation process, and remain attached to the zona pellucida after the ovulation of the Graafian follicle. For fertilization to occur, sperm cells rely on hyaluronidase to disperse the corona radiata from the zona pellucida of the secondary (ovulated) oocyte, thus permitting entry into the perivitelline space and allowing contact between the sperm cell and the nucleus of the oocyte.
Zona pellucida sperm-binding protein 3, also known as zona pellucida glycoprotein 3 (Zp-3) or the sperm receptor, is a ZP module-containing protein that in humans is encoded by the ZP3 gene. ZP3 is the glycoprotein in the zona pellucida most important for inducting the acrosome reaction of sperm cells at the beginning of fertilization.
Human embryonic development or human embryogenesis is the development and formation of the human embryo. It is characterised by the processes of cell division and cellular differentiation of the embryo that occurs during the early stages of development. In biological terms, the development of the human body entails growth from a one-celled zygote to an adult human being. Fertilization occurs when the sperm cell successfully enters and fuses with an egg cell (ovum). The genetic material of the sperm and egg then combine to form the single cell zygote and the germinal stage of development commences. Human embryonic development covers the first eight weeks of development, which have 23 stages, called Carnegie stages. At the beginning of the ninth week, the embryo is termed a fetus. In comparison to the embryo, the fetus has more recognizable external features and a more complete set of developing organs.
Sperm motility describes the ability of sperm to move properly through the female reproductive tract or through water to reach the egg. Sperm motility can also be thought of as the quality, which is a factor in successful conception; sperm that do not "swim" properly will not reach the egg in order to fertilize it. Sperm motility in mammals also facilitates the passage of the sperm through the cumulus oophorus and the zona pellucida, which surround the mammalian oocyte.
Zona pellucida sperm-binding protein 2 is a protein that in humans is encoded by the ZP2 gene.
Zona pellucida sperm-binding protein 4, ZP-4 or avilesine, named after its discoverer Manuel Avilés Sánchez is a protein that in humans is encoded by the ZP4 gene.
Vitellin is a protein found in the egg yolk. It is a phosphoprotein. Vitellin is a generic name for major of many yolk proteins.
The insect vitelline envelope is the outer proteinaceous layer outside the oocyte and egg. The vitelline envelope, not being a cellular structure, is commonly referred to as a membrane. However, this is a technical misnomer as the structure is composed of protein and is not a cellular component. It varies in thickness between different insects and even varies at different parts of the egg. It lies inside the outer shell of the egg, which is commonly referred to as the chorion.
The zona pellucida-like domain is a large protein region of about 260 amino acids. It has been recognised in a variety of receptor-like eukaryotic glycoproteins. All of these molecules are mosaic proteins with a large extracellular region composed of various domains, often followed by either a transmembrane domain and a short cytoplasmic region or by a GPI-anchor.
Oocyteactivation is a series of processes that occur in the oocyte during fertilization.
Cortical granules are regulatory secretory organelles found within oocytes and are most associated with polyspermy prevention after the event of fertilization. Cortical granules are found among all mammals, many vertebrates, and some invertebrates. Within the oocyte, cortical granules are located along the cortex, the region furthest from the cell's center. Following fertilization, a signaling pathway induces the cortical granules to fuse with the oocyte's cell membrane and release their contents into the oocyte's extracellular matrix. This exocytosis of cortical granules is known as the cortical reaction. In mammals, the oocyte's extracellular matrix includes a surrounding layer of perivitelline space, zona pellucida, and finally cumulus cells. Experimental evidence has demonstrated that the released contents of the cortical granules modify the oocyte's extracellular matrix, particularly the zona pellucida. This alteration of the zona pellucida components is known as the zona reaction. The cortical reaction does not occur in all mammals, suggesting the likelihood of other functional purposes for cortical granules. In addition to modifying the oocyte's extracellular matrix and establishing a block to polyspermy, the exocytosis of cortical granules may also contribute towards protection and support of the developing embryo during preimplantation. Once the cortical granules complete their functions, the oocyte does not replenish them.
Paul Michael Wassarman is an American biologist who has been Professor in the Dept. of Cell, Developmental, and Regenerative Biology at the Icahn School of Medicine at Mount Sinai since 1996. His laboratory identified and characterised proteins that make up the zona pellucida (ZP) of mammalian eggs and determined their role in fertilisation.
This article incorporates text in the public domain from page 45 of the 20th edition of Gray's Anatomy (1918)