In common usage, wind gradient, more specifically wind speed gradient [1] or wind velocity gradient, [2] or alternatively shear wind, [3] is the vertical component of the gradient of the mean horizontal wind speed in the lower atmosphere. [4] It is the rate of increase of wind strength with unit increase in height above ground level. [5] [6] In metric units, it is often measured in units of meters per second of speed, per kilometer of height (m/s/km), which reduces inverse milliseconds (ms−1), a unit also used for shear rate.
Surface friction forces the surface wind to slow and turn near the surface of the Earth, blowing directly towards the low pressure, when compared to the winds in the nearly frictionless flow well above the Earth's surface. [7] This bottom layer, where surface friction slows the wind and changes the wind direction, is known as the planetary boundary layer. Daytime solar heating due to insolation thickens the boundary layer, as air warmed by contact with the Earth's hot surface rises up and increasingly mixes with air higher up. Radiative cooling overnight gradually decouples the winds at the surface from the winds above the boundary layer, increasing vertical wind shear near the surface, also known as wind gradient.
Typically, due to aerodynamic drag, there is a wind gradient in the wind flow, especially in the first few hundred meters above the Earth's surface—the surface layer of the planetary boundary layer. Wind speed increases with increasing height above the ground, starting from zero[ dubious ] [6] due to the no-slip condition. [8] Flow near the surface encounters obstacles that reduce the wind speed, and introduce random vertical and horizontal velocity components at right angles to the main direction of flow. [9] This turbulence causes vertical mixing between the air moving horizontally at various levels, which has an effect on the dispersion of pollutants, [1] dust and airborne sand and soil particles. [10]
The reduction in velocity near the surface is a function of surface roughness. Wind velocity profiles are quite different for different terrain types. [8] Rough, irregular ground, and man-made obstructions on the ground, retard movement of the air near the surface, reducing wind velocity. [4] [11] Because of the relatively smooth water surface, wind speeds do not decrease as much close to the sea as they do on land. [12] Over a city or rough terrain, the wind gradient effect could cause a reduction of 40% to 50% of the geostrophic wind speed aloft; while over open water or ice, the reduction may be only 20% to 30%. [13] [14]
For engineering purposes, the wind gradient is modeled as a simple shear exhibiting a vertical velocity profile varying according to a power law with a constant exponential coefficient based on surface type. The height above ground where surface friction has a negligible effect on wind speed is called the "gradient height" and the wind speed above this height is assumed to be a constant called the "gradient wind speed". [11] [15] [16] For example, typical values for the predicted gradient height are 457 m for large cities, 366 m for suburbs, 274 m for open terrain, and 213 m for open sea. [17]
Although the power law exponent approximation is convenient, it has no theoretical basis. [18] When the temperature profile is adiabatic, the wind speed should vary logarithmically with height, [19] Measurements over open terrain in 1961 showed good agreement with the logarithmic fit up to 100 m or so, with near constant average wind speed up through 1000 m. [20]
The shearing of the wind is usually three-dimensional, [21] that is, there is also a change in direction between the 'free' pressure-driven geostrophic wind and the wind close to the ground. [22] This is related to the Ekman spiral effect. The cross-isobar angle of the diverted ageostrophic flow near the surface ranges from 10° over open water, to 30° over rough hilly terrain, and can increase to 40°-50° over land at night when the wind speed is very low. [14]
After sundown the wind gradient near the surface increases, with the increasing stability. [23] Atmospheric stability occurring at night with radiative cooling tends to contain turbulent eddies vertically, increasing the wind gradient. [10] The magnitude of the wind gradient is largely influenced by the height of the convective boundary layer and this effect is even larger over the sea, where there is no diurnal variation of the height of the boundary layer as there is over land. [24] In the convective boundary layer, strong mixing diminishes vertical wind gradient. [25]
The design of buildings must account for wind loads, and these are affected by wind gradient. The respective gradient levels, usually assumed in the Building Codes, are 500 meters for cities, 400 meters for suburbs, and 300 m for flat open terrain. [26] For engineering purposes, a power law wind speed profile may be defined as follows: [11] [15]
where:
Wind turbine operation is affected by wind gradient. Vertical wind-speed profiles result in different wind speeds at the blades nearest to the ground level compared to those at the top of blade travel, which results in asymmetric load. [27] The wind gradient can create a large bending moment in the shaft of a two-bladed turbine when the blades are vertical. [28] The reduced wind gradient over water means shorter and less expensive wind turbine towers can be used in windparks which are placed in (shallow) seas. [12] It would be preferable for wind turbines to be tested in a wind tunnel simulating the wind gradient that they will eventually see, but this is rarely done. [29]
For wind turbine engineering, a polynomial variation in wind speed with height can be defined relative to wind measured at a reference height of 10 meters as: [27]
where:
The Hellmann exponent depends upon the coastal location and the shape of the terrain on the ground, and the stability of the air. Examples of values of the Hellmann exponent are given in the table below: [30]
Location | a |
---|---|
Unstable air above open water surface | 0.06 |
Neutral air above open water surface | 0.10 |
Unstable air above flat open coast | 0.11 |
Neutral air above flat open coast | 0.16 |
Stable air above open water surface | 0.27 |
Unstable air above human inhabited areas | 0.27 |
Neutral air above human inhabited areas | 0.34 |
Stable air above flat open coast | 0.40 |
Stable air above human inhabited areas | 0.60 |
In gliding, wind gradient affects the takeoff and landing phases of flight of a glider. Wind gradient can have a noticeable effect on ground launches. If the wind gradient is significant or sudden, or both, and the pilot maintains the same pitch attitude, the indicated airspeed will increase, possibly exceeding the maximum ground launch tow speed. The pilot must adjust the airspeed to deal with the effect of the gradient. [31]
When landing, wind gradient is also a hazard, particularly when the winds are strong. [32] As the glider descends through the wind gradient on final approach to landing, airspeed decreases while sink rate increases, and there is insufficient time to accelerate prior to ground contact. The pilot must anticipate the wind gradient and use a higher approach speed to compensate for it. [33]
Wind gradient is also a hazard for aircraft making steep turns near the ground. It is a particular problem for gliders which have a relatively long wingspan, which exposes them to a greater wind speed difference for a given bank angle. The different airspeed experienced by each wing tip can result in an aerodynamic stall on one wing, causing a loss of control accident. [33] [34] The rolling moment generated by the different airflow over each wing can exceed the aileron control authority, causing the glider to continue rolling into a steeper bank angle. [35]
In sailing, wind gradient affects sailboats by presenting a different wind speed to the sail at different heights along the mast. The direction also varies with height, but sailors refer to this as "wind shear." [36]
The mast head instruments indication of apparent wind speed and direction is different from what the sailor sees and feels near the surface. [37] [38] Sailmakers may introduce sail twist in the design of the sail, where the head of the sail is set at a different angle of attack from the foot of the sail in order to change the lift distribution with height. The effect of wind gradient can be factored into the selection of twist in the sail design, but this can be difficult to predict since the wind gradient may vary widely in different weather conditions. [38] Sailors may also adjust the trim of the sail to account for wind gradient, for example using a boom vang. [38]
According to one source, [39] the wind gradient is not significant for sailboats when the wind is over 6 knots (because a wind speed of 10 knots at the surface corresponds to 15 knots at 300 meters, so the change in speed is negligible over the height of a sailboat's mast). According to the same source, the wind increases steadily with height up to about 10 meters in 5 knot winds but less if there is less wind. That source states that in winds with average speeds of six knots or more, the change of speed with height is confined almost entirely to the one or two meters closest to the surface. [40] This is consistent with another source, which shows that the change in wind speed is very small for heights over 2 meters [41] and with a statement by the Australian Government Bureau of Meteorology [42] according to which differences can be as little as 5% in unstable air. [43]
In kitesurfing, the wind gradient is even more important, because the power kite is flown on 20-30m lines, [44] and the kitesurfer can use the kite to jump off the water, bringing the kite to even greater heights above the sea surface.
Wind gradient can have a pronounced effect upon sound propagation in the lower atmosphere. This effect is important in understanding sound propagation from distant sources, such as foghorns, thunder, sonic booms, gunshots or other phenomena like mistpouffers. It is also important in studying noise pollution, for example from roadway noise and aircraft noise, and must be considered in the design of noise barriers. [45] When wind speed increases with altitude, wind blowing towards the listener from the source will refract sound waves downwards, resulting in increased noise levels downwind of the barrier. [46] These effects were first quantified in the field of highway engineering to address variations of noise barrier efficacy in the 1960s. [47]
When the sun warms the Earth's surface, there is a negative temperature gradient in atmosphere. The speed of sound decreases with decreasing temperature, so this also creates a negative sound speed gradient. [48] The sound wave front travels faster near the ground, so the sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source. [49] The radius of curvature of the sound path is inversely proportional to the velocity gradient. [50]
A wind speed gradient of 4 (m/s)/km can produce refraction equal to a typical temperature lapse rate of 7.5 °C/km. [51] Higher values of wind gradient will refract sound downward toward the surface in the downwind direction, [52] eliminating the acoustic shadow on the downwind side. This will increase the audibility of sounds downwind. This downwind refraction effect occurs because there is a wind gradient; the sound is not being carried along by the wind. [53]
There will usually be both a wind gradient and a temperature gradient. In that case, the effects of both might add together or subtract depending on the situation and the location of the observer. [54] The wind gradient and the temperature gradient can also have complex interactions. For example, a foghorn can be audible at a place near the source, and a distant place, but not in a sound shadow between them. [55] In the case of transverse sound propagation, wind gradients do not sensibly modify sound propagation relative to the windless condition; the gradient effect appears to be important only in upwind and downwind configurations. [56]
For sound propagation, the exponential variation of wind speed with height can be defined as follows: [46]
where:
In the 1862 American Civil War Battle of Iuka, an acoustic shadow, believed to have been enhanced by a northeast wind, kept two divisions of Union soldiers out of the battle, [57] because they could not hear the sounds of battle only six miles downwind. [58]
Scientists have understood the effect of wind gradient upon refraction of sound since the mid-1900s; however, with the advent of the U.S. Noise Control Act, this refractive phenomenon was widely used beginning in the early 1970s, chiefly in the consideration of noise propagation from highways and resultant design of transportation facilities. [59]
Wind gradient soaring, also called dynamic soaring, is a technique used by soaring birds including albatrosses. If the wind gradient is of sufficient magnitude, a bird can climb into the wind gradient, trading ground speed for height, while maintaining airspeed. [60] By then turning downwind, and diving through the wind gradient, they can also gain energy. [61]
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 m/s, or one km in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed of sound in air is about 331 m/s. More simply, the speed of sound is how fast vibrations travel.
Wind shear, sometimes referred to as wind gradient, is a difference in wind speed and/or direction over a relatively short distance in the atmosphere. Atmospheric wind shear is normally described as either vertical or horizontal wind shear. Vertical wind shear is a change in wind speed or direction with a change in altitude. Horizontal wind shear is a change in wind speed with a change in lateral position for a given altitude.
Dynamic soaring is a flying technique used to gain energy by repeatedly crossing the boundary between air masses of different velocity. Such zones of wind gradient are generally found close to obstacles and close to the surface, so the technique is mainly of use to birds and operators of radio-controlled gliders, but glider pilots are sometimes able to soar dynamically in meteorological wind shears at higher altitudes.
In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples to waves over 30 m (100 ft) high, being limited by wind speed, duration, fetch, and water depth.
Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance, the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid.
In meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. On Earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, and moisture display rapid fluctuations (turbulence) and vertical mixing is strong. Above the PBL is the "free atmosphere", where the wind is approximately geostrophic, while within the PBL the wind is affected by surface drag and turns across the isobars.
In atmospheric science, the thermal wind is the vector difference between the geostrophic wind at upper altitudes minus that at lower altitudes in the atmosphere. It is the hypothetical vertical wind shear that would exist if the winds obey geostrophic balance in the horizontal, while pressure obeys hydrostatic balance in the vertical. The combination of these two force balances is called thermal wind balance, a term generalizable also to more complicated horizontal flow balances such as gradient wind balance.
The Ekman layer is the layer in a fluid where there is a force balance between pressure gradient force, Coriolis force and turbulent drag. It was first described by Vagn Walfrid Ekman. Ekman layers occur both in the atmosphere and in the ocean.
Ekman transport is part of Ekman motion theory, first investigated in 1902 by Vagn Walfrid Ekman. Winds are the main source of energy for ocean circulation, and Ekman transport is a component of wind-driven ocean current. Ekman transport occurs when ocean surface waters are influenced by the friction force acting on them via the wind. As the wind blows it casts a friction force on the ocean surface that drags the upper 10-100m of the water column with it. However, due to the influence of the Coriolis effect, the ocean water moves at a 90° angle from the direction of the surface wind. The direction of transport is dependent on the hemisphere: in the northern hemisphere, transport occurs at 90° clockwise from wind direction, while in the southern hemisphere it occurs at 90° anticlockwise. This phenomenon was first noted by Fridtjof Nansen, who recorded that ice transport appeared to occur at an angle to the wind direction during his Arctic expedition of the 1890s. Ekman transport has significant impacts on the biogeochemical properties of the world's oceans. This is because it leads to upwelling and downwelling in order to obey mass conservation laws. Mass conservation, in reference to Ekman transfer, requires that any water displaced within an area must be replenished. This can be done by either Ekman suction or Ekman pumping depending on wind patterns.
Wind engineering is a subset of mechanical engineering, structural engineering, meteorology, and applied physics that analyzes the effects of wind in the natural and the built environment and studies the possible damage, inconvenience or benefits which may result from wind. In the field of engineering it includes strong winds, which may cause discomfort, as well as extreme winds, such as in a tornado, hurricane or heavy storm, which may cause widespread destruction. In the fields of wind energy and air pollution it also includes low and moderate winds as these are relevant to electricity production and dispersion of contaminants.
Underwater acoustics is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries. The water may be in the ocean, a lake, a river or a tank. Typical frequencies associated with underwater acoustics are between 10 Hz and 1 MHz. The propagation of sound in the ocean at frequencies lower than 10 Hz is usually not possible without penetrating deep into the seabed, whereas frequencies above 1 MHz are rarely used because they are absorbed very quickly.
In acoustics, the sound speed gradient is the rate of change of the speed of sound with distance, for example with depth in the ocean, or height in the Earth's atmosphere. A sound speed gradient leads to refraction of sound wavefronts in the direction of lower sound speed, causing the sound rays to follow a curved path. The radius of curvature of the sound path is inversely proportional to the gradient.
In fluid dynamics, flow can be decomposed into primary flow plus secondary flow, a relatively weaker flow pattern superimposed on the stronger primary flow pattern. The primary flow is often chosen to be an exact solution to simplified or approximated governing equations, such as potential flow around a wing or geostrophic current or wind on the rotating Earth. In that case, the secondary flow usefully spotlights the effects of complicated real-world terms neglected in those approximated equations. For instance, the consequences of viscosity are spotlighted by secondary flow in the viscous boundary layer, resolving the tea leaf paradox. As another example, if the primary flow is taken to be a balanced flow approximation with net force equated to zero, then the secondary circulation helps spotlight acceleration due to the mild imbalance of forces. A smallness assumption about secondary flow also facilitates linearization.
In physical oceanography and fluid dynamics, the wind stress is the shear stress exerted by the wind on the surface of large bodies of water – such as oceans, seas, estuaries and lakes. When wind is blowing over a water surface, the wind applies a wind force on the water surface. The wind stress is the component of this wind force that is parallel to the surface per unit area. Also, the wind stress can be described as the flux of horizontal momentum applied by the wind on the water surface. The wind stress causes a deformation of the water body whereby wind waves are generated. Also, the wind stress drives ocean currents and is therefore an important driver of the large-scale ocean circulation. The wind stress is affected by the wind speed, the shape of the wind waves and the atmospheric stratification. It is one of the components of the air–sea interaction, with others being the atmospheric pressure on the water surface, as well as the exchange of energy and mass between the water and the atmosphere.
In fluid dynamics, wave shoaling is the effect by which surface waves, entering shallower water, change in wave height. It is caused by the fact that the group velocity, which is also the wave-energy transport velocity, changes with water depth. Under stationary conditions, a decrease in transport speed must be compensated by an increase in energy density in order to maintain a constant energy flux. Shoaling waves will also exhibit a reduction in wavelength while the frequency remains constant.
Shear velocity, also called friction velocity, is a form by which a shear stress may be re-written in units of velocity. It is useful as a method in fluid mechanics to compare true velocities, such as the velocity of a flow in a stream, to a velocity that relates shear between layers of flow.
Ocean dynamics define and describe the flow of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean, and deep ocean.
Forces on sails result from movement of air that interacts with sails and gives them motive power for sailing craft, including sailing ships, sailboats, windsurfers, ice boats, and sail-powered land vehicles. Similar principles in a rotating frame of reference apply to windmill sails and wind turbine blades, which are also wind-driven. They are differentiated from forces on wings, and propeller blades, the actions of which are not adjusted to the wind. Kites also power certain sailing craft, but do not employ a mast to support the airfoil and are beyond the scope of this article.
The convective planetary boundary layer (CPBL), also known as the daytime planetary boundary layer, is the part of the lower troposphere most directly affected by solar heating of the earth's surface.
Refraction, in acoustics, comparable to the refraction of electromagnetic radiation, is the bending of sound propagation trajectories (rays) in inhomogeneous elastic media in which the wave velocity is a function of spatial coordinates. Bending of acoustic rays in layered inhomogeneous media occurs towards a layer with a smaller sound velocity. This effect is responsible for guided propagation of sound waves over long distances in the ocean and in the atmosphere.
Thus we have a "wind-speed gradient" as we move vertically, and this has a tendency to encourage mixing between the air at one level and the air at those levels immediately above and below it.
...the effect of a change in mean wind velocity with altitude, the wind velocity gradient...[ permanent dead link ]
...the shear wind gradient is rather weak....the energy gain...is due to a mechanism other than the wind gradient effect.
Therefore the vertical gradient of mean wind speed (dū/dz) is greatest over smooth terrain, and least over rough surfaces.
wind gradient = rate of increase of wind strength with unit increase in height above ground level;
The relation between wind speed and height is called the wind profile or wind gradient.
Flow near the surface encounters small obstacles that change the wind speed and introduce random vertical and horizontal velocity components at right angles to the main direction of flow.
...both the wind gradient and the mean wind profile itself can usually be described diagnostically by the log wind profile.
In the bulk of the convective boundary layer, strong mixing diminishes vertical wind gradient...
It would be preferable to evaluate windmills in the wind gradient that they will eventually see, but this is rarely done.
The reason for making the increase is because the wind speed increases with height (a `wind gradient')
The wind gradient is said to be steep or pronounced when the change in wind speed with height is very rapid, and it is in these conditions that extra care must be used when taking off or landing in a glider
Wind shear is the difference in direction at varying heights above the water; wind gradient is the difference in wind strength at varying heights above the water.
You'll not recognize wind shear if your apparent wind angle is smaller on one tack than on the other because the apparent wind direction is a combination of boat speed and wind speed - and the sailing speed may be more determined by water conditions in one direction rather than another. This means that the faster a boat goes the more 'ahead' the apparent wind becomes. That is why the 'close reach' direction is the fastest direction of sailing – simply because as the boat speeds up the apparent wind direct goes further and further forward without stalling the sails and the apparent wind speed also increases – so increasing the boat's speed even further. This particular factor is exploited to the full in sand-yachting in which it is common for a sand yacht to exceed the wind speed as measured by a stationary observer. Wind shear is certainly felt because the wind speed at the masthead will be higher than at deck level. Thus gusts of wind can capsize a small sailing boat easily if the crew are not sufficiently wary.
Wind speed and direction are normally measured at the top of the mast, and the wind gradient must therefore be known in order to determine the mean wind speed incident on the sail.
As wind speed generally increases with altitude, wind blowing towards the listener from the source will refract sound waves downwards, resulting in increased noise levels.
It may be seen that refraction effects occur only because there is a wind gradient and it is not due to the result of sound being convected along by the wind.
...there will usually be both a wind gradient and a temperature gradient.