5-MBPB

Last updated
5-MBPB
5-MBPB structure.png
Clinical data
ATC code
  • none
Legal status
Legal status
Identifiers
  • 1-(1-benzofuran-5-yl)-N-methylbutan-2-amine
PubChem CID
ChemSpider
UNII
Chemical and physical data
Formula C13H17NO
Molar mass 203.28 g/mol (freebase) 239.78 g/mol (hydrochloride) g·mol−1
3D model (JSmol)
  • CCC(CC1=CC2=C(OC=C2)C=C1)NC
  • InChI=1S/C13H17NO/c1-3-12(14-2)9-10-4-5-13-11(8-10)6-7-15-13/h4-8,12,14H,3,9H2,1-2H3
  • Key:CTEZPBCLIKEASW-UHFFFAOYSA-N

5-MBPB (also known as 5-MPBP and 5-MABB) is an amphetamine derivative which is structurally related to MDMA and has been sold as a designer drug. It can be described as the benzofuran-5-yl analogue of MBDB or the butanamine homologue of 5-MAPB, and is also a structural isomer of 5-EAPB and 6-EAPB. Anecdotal reports suggest this compound has been sold as a designer drug in various European countries since early 2015, but the first definitive identification was made in December 2015 by a forensic laboratory in Slovenia. [1]

5-MBPB is similar in structure to compounds such as 5-APB which are claimed to be agonists of the 5-HT2C receptor. [2]

Related Research Articles

A designer drug is a structural or functional analog of a controlled substance that has been designed to mimic the pharmacological effects of the original drug, while avoiding classification as illegal and/or detection in standard drug tests. Designer drugs include psychoactive substances that have been designated by the European Union as new psychoactive substances (NPS) as well as analogs of performance-enhancing drugs such as designer steroids. Some of these were originally synthesized by academic or industrial researchers in an effort to discover more potent derivatives with fewer side effects and shorter duration and were later co-opted for recreational use. Other designer drugs were prepared for the first time in clandestine laboratories. Because the efficacy and safety of these substances have not been thoroughly evaluated in animal and human trials, the use of some of these drugs may result in unexpected side effects.

<span class="mw-page-title-main">25I-NBOMe</span> Synthetic hallucinogen

25I-NBOMe is a novel synthetic psychoactive substance with strong hallucinogenic properties, synthesized in 2003 for research purposes. Since 2010, it has circulated in the recreational drug scene, often misrepresented as LSD. The recreational usage of 25I is associated with severe intoxication and deaths in humans.

<span class="mw-page-title-main">6-APB</span> Psychoactive drug

6-APB is an empathogenic psychoactive compound of the substituted benzofuran and substituted phenethylamine classes. 6-APB and other compounds are sometimes informally called "Benzofury" in newspaper reports. It is similar in structure to MDA, but differs in that the 3,4-methylenedioxyphenyl ring system has been replaced with a benzofuran ring. 6-APB is also the unsaturated benzofuran derivative of 6-APDB. It may appear as a tan grainy powder. While the drug never became particularly popular, it briefly entered the rave and underground clubbing scene in the UK before its sale and import were banned. It falls under the category of research chemicals, sometimes called "legal highs." Because 6-APB and other substituted benzofurans have not been explicitly outlawed in some countries, they are often technically legal, contributing to their popularity.

<span class="mw-page-title-main">Cannabicyclohexanol</span> Chemical compound

Cannabicyclohexanol is a cannabinoid receptor agonist drug, developed by Pfizer in 1979. On 19 January 2009, the University of Freiburg in Germany announced that an analog of CP 47,497 was the main active ingredient in the herbal incense product Spice, specifically the 1,1-dimethyloctyl homologue of CP 47,497, which is now known as cannabicyclohexanol. The 1,1-dimethyloctyl homologue of CP 47,497 is in fact several times more potent than the parent compound, which is somewhat unexpected as the 1,1-dimethylheptyl is the most potent substituent in classical cannabinoid compounds such as HU-210.

<span class="mw-page-title-main">5-APB</span> Chemical compound

5-APB is an empathogenic psychoactive compound of the substituted benzofuran, substituted amphetamine and substituted phenethylamine classes. 5-APB and other compounds are sometimes informally called "Benzofury".

<span class="mw-page-title-main">APINACA</span> Chemical compound

APINACA (AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide) is a drug that acts as a reasonably potent agonist for the cannabinoid receptors. It is a full agonist at CB1 with an EC50 of 142 nM and Ki of 3.24 nM (compared to the Ki of Δ9-THC at 28.35 nM and JWH-018 at 9.62 nM), while at CB2 it acts as a partial agonist with an EC50 of 141 nM and Ki of 1.68 nM (compared to the Ki of Δ9-THC at 37.82 nM and JWH-018 at 8.55 nM). Its pharmacological characterization has also been reported in a discontinued patent application. It had never previously been reported in the scientific or patent literature, and was first identified by laboratories in Japan in March 2012 as an ingredient in synthetic cannabis smoking blends, along with a related compound APICA. Structurally, it closely resembles cannabinoid compounds from a University of Connecticut patent, but with a simple pentyl chain on the indazole 1-position, and APINACA falls within the claims of this patent despite not being disclosed as an example.

<span class="mw-page-title-main">EAM-2201</span> Chemical compound

EAM-2201 is a drug that presumably acts as a potent agonist for the cannabinoid receptors. It had never previously been reported in the scientific or patent literature, and was first identified by laboratories in Japan in July 2012 as an ingredient in synthetic cannabis smoking blends Like the closely related MAM-2201 which had been first reported around a year earlier, EAM-2201 thus appears to be another novel compound invented by designer drug suppliers specifically for recreational use. Structurally, EAM-2201 is a hybrid of two known cannabinoid compounds JWH-210 and AM-2201, both of which had previously been used as active ingredients in synthetic cannabis blends before being banned in many countries.

<span class="mw-page-title-main">APICA (synthetic cannabinoid drug)</span> Chemical compound

APICA is an indole based drug that acts as a potent agonist for the cannabinoid receptors.

<span class="mw-page-title-main">PB-22</span> Chemical compound

PB-22 is a designer drug offered by online vendors as a cannabimimetic agent, and detected being sold in synthetic cannabis products in Japan in 2013. PB-22 represents a structurally unique synthetic cannabinoid chemotype, since it contains an ester linker at the indole 3-position, rather than the precedented ketone of JWH-018 and its analogs, or the amide of APICA and its analogs.

<span class="mw-page-title-main">5-EAPB</span> Chemical compound

5-EAPB is a potentially entactogenic amphetamine which is structurally related to 5-MAPB and 5-APB. It might be predicted to show similar effects to these drugs in humans, but the pharmacology of 5-EAPB remains unstudied as of 2020.

<span class="mw-page-title-main">25D-NBOMe</span> Chemical compound

25D-NBOMe is a derivative of the phenethylamine derived hallucinogen 2C-D. It acts in a similar manner to related compounds such as 25I-NBOMe, which is a potent agonist at the 5HT2A receptor. 25D-NBOMe has been sold as a street drug since 2010 and produces similar effects in humans to related compounds such as 25I-NBOMe and 25C-NBOMe. It was banned as a Temporary Class Drug in the UK on 10 June 2013 after concerns about its recreational use.

<span class="mw-page-title-main">5-MAPDB</span> Chemical compound

5-MAPDB (1-(2,3-dihydrobenzofuran-5-yl)-N-methylpropan-2-amine) is a chemical compound which acts as an entactogenic drug. It is structurally related to drugs like 5-APDB and 5-MAPB, which have similar effects to MDMA and have been used as recreational drugs. 5-MAPDB has been studied to determine its pharmacological activity, and was found to be a relatively selective serotonin releaser, though with weaker actions as a releaser of other monoamines and 5-HT2 receptor family agonist, similar to older compounds such as 5-APDB.

<i>N</i>,α-Diethylphenethylamine Chemical compound

N,α-Diethylphenethylamine is a close chemical analog of methamphetamine, which has been sold as a designer drug. It was originally patented by Knoll Pharma as one of several analogs for pharmaceutical applications. In animal models these analogs showed properties of cognitive enhancement and increased pain tolerance. Nevertheless, this class of compounds was never developed into a medicine. N,α-DEPEA has not been studied in humans, but experts such as Pieter Cohen of Harvard Medical School expect it to be less potent than methamphetamine, but greater than ephedrine.

<span class="mw-page-title-main">THJ-2201</span> Synthetic cannabinoid

THJ-2201 is an indazole-based synthetic cannabinoid that presumably acts as a potent agonist of the CB1 receptor and has been sold online as a designer drug.

<span class="mw-page-title-main">SDB-005</span> Chemical compound

SDB-005 is an indazole-based synthetic cannabinoid that has been sold online as a designer drug. It is presumed to be an agonist of the CB1 and CB2 cannabinoid receptors. SDB-005 is the indazole core analog of PB-22 where the 8-hydroxyquinoline has also been replaced with a naphthalene group.

<span class="mw-page-title-main">MDMB-CHMICA</span> Chemical compound

MDMB-CHMICA is an indole-based synthetic cannabinoid that is a potent agonist of the CB1 receptor and has been sold online as a designer drug. While MDMB-CHMICA was initially sold under the name "MMB-CHMINACA", the compound corresponding to this code name (i.e. the isopropyl instead of t-butyl analogue of MDMB-CHMINACA) has been identified on the designer drug market in 2015 as AMB-CHMINACA.

<span class="mw-page-title-main">5F-APINACA</span> Chemical compound

5F-APINACA is an indazole-based synthetic cannabinoid that has been sold online as a designer drug. Structurally it closely resembles cannabinoid compounds from patent WO 2003/035005 but with a 5-fluoropentyl chain on the indazole 1-position, and 5F-APINACA falls within the claims of this patent, as despite not being disclosed as an example, it is very similar to the corresponding pentanenitrile and 4-chlorobutyl compounds which are claimed as examples 3 and 4.

<span class="mw-page-title-main">5F-AB-FUPPYCA</span> Chemical compound

5F-AB-FUPPYCA (also known as AZ-037) is a pyrazole-based synthetic cannabinoid that is presumed to be an agonist of the CB1 receptor and has been sold online as a designer drug. It was first detected by the EMCDDA as part of a seizure of 540 g white powder in France in February 2015.

<span class="mw-page-title-main">NE-CHMIMO</span> Chemical compound

NE-CHMIMO (CHM-018) is an indole-based synthetic cannabinoid that is presumed to be a potent agonist of the CB1 receptor and has been sold online as a designer drug. NE-CHMIMO is the 1-cyclohexylmethyl (instead of 1-pentyl) analogue of the first-generation synthetic cannabinoid JWH-018. The corresponding cyclohexylmethyl derivative of JWH-081 had also been reported several months earlier.

<span class="mw-page-title-main">25-NB</span> Family of serotonergic psychedelics

The 25-NB (25x-NBx) series, sometimes alternatively referred to as the NBOMe compounds, is a family of serotonergic psychedelics. They are substituted phenethylamines and were derived from the 2C family. They act as selective agonists of the serotonin 5-HT2A receptor. The 25-NB family is unique relative to other classes of psychedelics in that they are, generally speaking, extremely potent and relatively selective for the 5-HT2A receptor. Use of NBOMe series drugs has caused many deaths and hospitalisations since the drugs popularisation in the 2010s. This is primarily due to their high potency, unpredictable pharmacokinetics, and sellers passing off the compounds in the series as LSD.

References

  1. European Monitoring Center for Drugs and Drug Addiction – Europol 2015 Annual Report on the implementation of Council Decision 2005/387/JHA
  2. USpatent 7045545,Karin Briner et al,"Aminoalkylbenzofurans as serotonin (5-HT(2c)) agonists",published 2000-01-19,issued 2006-16-03