Binospirone

Last updated
Binospirone
Binospirone.svg
Binospirone 3D.gif
Clinical data
ATC code
  • none
Identifiers
  • 8-[2-(2,3-dihydro-1,4-benzodioxin-2-ylmethylamino)ethyl]-8-azaspiro[4.5]decane-7,9-dione
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
Chemical and physical data
Formula C20H26N2O4
Molar mass 358.438 g·mol−1
3D model (JSmol)
  • O=C1N(C(=O)CC2(C1)CCCC2)CCNCC3Oc4ccccc4OC3
  • InChI=1S/C20H26N2O4/c23-18-11-20(7-3-4-8-20)12-19(24)22(18)10-9-21-13-15-14-25-16-5-1-2-6-17(16)26-15/h1-2,5-6,15,21H,3-4,7-14H2
  • Key:BVMYCHKQPGEOSI-UHFFFAOYSA-N
   (verify)

Binospirone (MDL-73,005-EF) is a drug which acts as a partial agonist at 5-HT1A somatodendritic autoreceptors but as an antagonist at postsynaptic 5-HT1A receptors. [1] It has anxiolytic effects. [2]

Contents

Synthesis

Patent (Ex 1 & Ex 9): Binospirone synthesis.svg
Patent (Ex 1 & Ex 9):

The reaction between catechol (1) and 2-chloroacrylonitrile [920-37-6] (2) gives 1,4-Benzodioxin-2-Carbonitrile [91889-45-1] (3). The reduction of the nitrile group with lithium aluminium hydride gives 2,3-dihydro-1,4-benzodioxin-3-ylmethanamine [4442-59-5] (4).

Alkylation of 3,3-Tetramethyleneglutarimide [1075-89-4] (5) with (for example) 2-chloroethanol gives 8-(2-hydroxyethyl)-8-azaspiro[4.5]decane-7,9-dione [21098-04-4] (6). FGI of the alcohol to a better leaving group by reaction with tosyl chloride gives CID:14839216 (7).

Convergent synthesis now completes the synthesis of Binospirone (8).

See also

Related Research Articles

<span class="mw-page-title-main">Serotonin</span> Monoamine neurotransmitter

Serotonin or 5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter. Its biological function is complex and multifaceted, modulating mood, cognition, reward, learning, memory, and numerous physiological processes such as vomiting and vasoconstriction. Approximately 90% of the serotonin that the body produces is in the intestinal tract.

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

<span class="mw-page-title-main">Azapirone</span> Drug class of psycotropic drugs

Azapirones are a class of drugs used as anxiolytics, antidepressants, and antipsychotics. They are commonly used as add-ons to other antidepressants, such as selective serotonin reuptake inhibitors (SSRIs).

<span class="mw-page-title-main">Buspirone</span> Medication used to treat anxiety disorders

Buspirone, sold under the brand name Buspar, among others, is a medication primarily used to treat anxiety disorders, particularly generalized anxiety disorder. Benefits support its short-term use. It is taken by mouth, and it may take up to four weeks to have an effect.

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations. 5-HT is short for 5-hydroxy-tryptamine or serotonin. This is the main excitatory receptor subtype among the GPCRs for serotonin, although 5-HT2A may also have an inhibitory effect on certain areas such as the visual cortex and the orbitofrontal cortex. This receptor was first noted for its importance as a target of serotonergic psychedelic drugs such as LSD and psilocybin mushrooms. Later it came back to prominence because it was also found to be mediating, at least partly, the action of many antipsychotic drugs, especially the atypical ones.

5-HT<sub>3</sub> antagonist Anti-nausea group of medications

The 5-HT3 antagonists, informally known as "setrons", are a class of drugs that act as receptor antagonists at the 5-HT3 receptor, a subtype of serotonin receptor found in terminals of the vagus nerve and in certain areas of the brain. With the notable exceptions of alosetron and cilansetron, which are used in the treatment of irritable bowel syndrome, all 5-HT3 antagonists are antiemetics, used in the prevention and treatment of nausea and vomiting. They are particularly effective in controlling the nausea and vomiting produced by cancer chemotherapy and are considered the gold standard for this purpose.

<span class="mw-page-title-main">Tandospirone</span> Chemical compound

Tandospirone is an anxiolytic and antidepressant drug used in China and Japan, where it is marketed by Dainippon Sumitomo Pharma. It is a member of the azapirone class of drugs and is closely related to other azapirones like buspirone and gepirone.

5-HT<sub>1A</sub> receptor Serotonin receptor protein distributed in the cerebrum and raphe nucleus

The serotonin 1A receptor is a subtype of serotonin receptor, or 5-HT receptor, that binds serotonin, also known as 5-HT, a neurotransmitter. 5-HT1A is expressed in the brain, spleen, and neonatal kidney. It is a G protein-coupled receptor (GPCR), coupled to the Gi protein, and its activation in the brain mediates hyperpolarisation and reduction of firing rate of the postsynaptic neuron. In humans, the serotonin 1A receptor is encoded by the HTR1A gene.

<span class="mw-page-title-main">Altanserin</span> Chemical compound

Altanserin is a compound that binds to the 5-HT2A receptor. Labeled with the isotope fluorine-18 it is used as a radioligand in positron emission tomography (PET) studies of the brain, i.e., studies of the 5-HT2A neuroreceptors. Besides human neuroimaging studies altanserin has also been used in the study of rats.

<span class="mw-page-title-main">Flesinoxan</span> Chemical compound

Flesinoxan (DU-29,373) is a potent and selective 5-HT1A receptor partial/near-full agonist of the phenylpiperazine class. Originally developed as a potential antihypertensive drug, flesinoxan was later found to possess antidepressant and anxiolytic effects in animal tests. As a result, it was investigated in several small human pilot studies for the treatment of major depressive disorder, and was found to have robust effectiveness and very good tolerability. However, due to "management decisions", the development of flesinoxan was stopped and it was not pursued any further.

<span class="mw-page-title-main">Bemesetron</span> Chemical compound

Bemesetron (MDL-72222) is a drug which acts as an antagonist at the 5HT3 receptor. It has antiemetic effects comparable to metoclopramide, however it is not used clinically, instead its main application is in scientific research studying the involvement of the 5HT3 receptor in the actions of drugs of abuse.

<span class="mw-page-title-main">Xylamidine</span>

Xylamidine is a drug which acts as an antagonist at the 5HT2A receptor, and to a lesser extent at the 5HT1A receptor. It does not cross the blood–brain barrier, which makes it useful for blocking peripheral serotonergic responses like cardiovascular and gastrointestinal effects, without producing the central effects of 5HT2A blockade such as sedation, or interfering with the central actions of 5HT2A agonists.

<span class="mw-page-title-main">Zalospirone</span>

Zalospirone (WY-47,846) is a selective 5-HT1A partial agonist of the azapirone chemical class. It was found to be effective in the treatment of anxiety and depression in clinical trials, but a high proportion of subjects dropped out due to side effects and development was subsequently never completed.

<span class="mw-page-title-main">Volinanserin</span> Chemical compound

Volinanserin (INN) is a highly selective 5-HT2A receptor antagonist that is frequently used in scientific research to investigate the function of the 5-HT2A receptor. It was also tested in clinical trials as a potential antipsychotic, antidepressant, and treatment for insomnia but was never marketed.

<span class="mw-page-title-main">Arylcyclohexylamine</span> Class of chemical compounds

Arylcyclohexylamines, also known as arylcyclohexamines or arylcyclohexanamines, are a chemical class of pharmaceutical, designer, and experimental drugs.

<span class="mw-page-title-main">Tiospirone</span> Pharmaceutical drug

Tiospirone (BMY-13,859), also sometimes called tiaspirone or tiosperone, is an atypical antipsychotic of the azapirone class. It was investigated as a treatment for schizophrenia in the late 1980s and was found to have an effectiveness equivalent to those of typical antipsychotics in clinical trials but without causing extrapyramidal side effects. However, development was halted and it was not marketed. Perospirone, another azapirone derivative with antipsychotic properties, was synthesized and assayed several years after tiospirone. It was found to be both more potent and more selective in comparison and was commercialized instead.

<span class="mw-page-title-main">Umespirone</span> Chemical compound

Umespirone (KC-9172) is a drug of the azapirone class which possesses anxiolytic and antipsychotic properties. It behaves as a 5-HT1A receptor partial agonist (Ki = 15 nM), D2 receptor partial agonist (Ki = 23 nM), and α1-adrenoceptor receptor antagonist (Ki = 14 nM), and also has weak affinity for the sigma receptor (Ki = 558 nM). Unlike many other anxiolytics and antipsychotics, umespirone produces minimal sedation, cognitive/memory impairment, catalepsy, and extrapyramidal symptoms.

<span class="mw-page-title-main">Naphthylpiperazine</span> Chemical compound

1-(1-Naphthyl)piperazine (1-NP) is a drug which is a phenylpiperazine derivative. It acts as a non-selective, mixed serotonergic agent, exerting partial agonism at the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F receptors, while antagonizing the 5-HT2A, 5-HT2B, and 5-HT2C receptors. It has also been shown to possess high affinity for the 5-HT3, 5-HT5A, 5-HT6, and 5-HT7 receptors, and may bind to 5-HT4 and the SERT as well. In animals it produces effects including hyperphagia, hyperactivity, and anxiolysis, of which are all likely mediated predominantly or fully by blockade of the 5-HT2C receptor.

<span class="mw-page-title-main">Glemanserin</span> Chemical compound

Glemanserin (INN) is a drug which acts as a potent and selective 5-HT2A receptor antagonist. The first truly selective 5-HT2A ligand to be discovered, glemanserin resulted in the development of the widely used and even more potent and selective 5-HT2A receptor antagonist volinanserin (MDL-100,907), which is a fluorinated analogue. Though it was largely superseded in scientific research by volinanserin, glemanserin was investigated clinically for the treatment of generalized anxiety disorder. However, it was ultimately found to be ineffective and was not marketed.

References

  1. Bertrand F, Lehmann O, Galani R, Lazarus C, Jeltsch H, Cassel JC (April 2001). "Effects of MDL 73005 on water-maze performances and locomotor activity in scopolamine-treated rats". Pharmacology, Biochemistry, and Behavior. 68 (4): 647–60. doi:10.1016/S0091-3057(01)00448-8. PMID   11526961. S2CID   8595441.
  2. Moser PC, Tricklebank MD, Middlemiss DN, Mir AK, Hibert MF, Fozard JR (February 1990). "Characterization of MDL 73005EF as a 5-HT1A selective ligand and its effects in animal models of anxiety: comparison with buspirone, 8-OH-DPAT and diazepam". British Journal of Pharmacology. 99 (2): 343–9. doi:10.1111/j.1476-5381.1990.tb14706.x. PMC   1917389 . PMID   1970269.
  3. Marcel Hibert, Maurice W. Gittos, U.S. Patent 4,612,312 (1986 to Merrell Dow Pharmaceuticals Inc.).