Flunixin

Last updated
Flunixin
Flunixin Structural Formulae V.1.svg
Clinical data
AHFS/Drugs.com International Drug Names
ATCvet code
Identifiers
  • 2-[[2-Methyl-3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.115.991 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C14H11F3N2O2
Molar mass 296.249 g·mol−1
3D model (JSmol)
  • CC1=C(C=CC=C1NC2=C(C=CC=N2)C(=O)O)C(F)(F)F
  • InChI=1S/C14H11F3N2O2/c1-8-10(14(15,16)17)5-2-6-11(8)19-12-9(13(20)21)4-3-7-18-12/h2-7H,1H3,(H,18,19)(H,20,21) X mark.svgN
  • Key:NOOCSNJCXJYGPE-UHFFFAOYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Flunixin is a nonsteroidal anti-inflammatory drug (NSAID), analgesic, and antipyretic used in horses, cattle and pigs. It is often formulated as the meglumine salt. In the United States, it is regulated by the U.S. Food and Drug Administration (FDA), and may only be lawfully distributed by order of a licensed veterinarian. There are many trade names for the product.

Contents

Dosage and uses in horses

Flunixin is administered at a dose of 1.1 mg/kg. [1] The full analgesic and antipyretic effects usually occur 1–2 hours following treatment, but there is often an effective analgesic effect within approximately 15 minutes. Despite its short plasma half life of 1.6–2.5 hours, effects can persist for up to 30 hours, [2] with maximal effects occurring between 2 and 16 hours. This is likely due to accumulation of the drug at inflammatory foci. Flunixin is primarily eliminated by the kidneys. [3]

Because it targets the inflamed tissue, flunixin is mainly used for colic pain, musculoskeletal pain, and ocular pain. [4] [5] [6] It is also used as an antipyretic and to reduce the effects of endotoxemia. [7]

Side effects and precautions

Flunixin is labeled for no more than 5 days of consecutive use and prolonged use increases the risk of toxicity. In horses, this includes gastric ulcers, [8] right dorsal colitis, [9] and nephrotoxicity. [10]

Flunixin is a prohibited substance under International Federation for Equestrian Sports rules, [11] and its use is prohibited or restricted by many other equestrian organizations. At labeled dose (1.1 mg/kg) given IV, detection time was found to be 144 hours. [12] However, drug recycling from bedding contamination by treated horses has been shown to potentially increase the clearance time. [13]

Administration

Flunixin may be given orally as a paste or as granules in feed. It can also be used intramuscularly (IM) or intravenously (IV). However, it is very irritating to tissue and IM administration has been associated with myonecrosis in horses, [14] so IV administration is preferred.

Administration of phenylbutazone to a horse also receiving flunixin has been shown to increase the risk of toxicity without improving analgesia. [15] [16] For this reason, concurrent administration with another NSAID is not recommended. Doubling the dose of flunixin produces no improvement in analgesia, while potentially increasing the risk of toxicity. [4]

In the US, the only labeled route for flunixin administration in cattle is intravenous and pour-on. This is not the case in other countries; for example, in the UK, Allevenix is licensed for IV and intramuscular use, [17] and a pour-on product also exists. [18]

In the US flunixin is not labelled for goat use, however, flunixin may be used in goats in an extra-label fashion under appropriate veterinary guidance. Flunixin administered subcutaneously to dairy goats may carry a milk withdraw recommendation of 36-60 hours. [19] Interestingly, when given subcutaneously to goats in that study, tissue injury, such as seen in horses with intramuscular administration, was not observed.

See also

Related Research Articles

<span class="mw-page-title-main">Ketoprofen</span> NSAID analgesic medication

Ketoprofen is one of the propionic acid class of nonsteroidal anti-inflammatory drugs (NSAID) with analgesic and antipyretic effects. It acts by inhibiting the body's production of prostaglandin.

<span class="mw-page-title-main">Phenylbutazone</span> Nonsteroidal anti-inflammatory drug (NSAID)

Phenylbutazone, often referred to as "bute", is a nonsteroidal anti-inflammatory drug (NSAID) for the short-term treatment of pain and fever in animals.

<span class="mw-page-title-main">Laminitis</span> Disease of the feet of hooved animals

Laminitis is a disease that affects the feet of ungulates and is found mostly in horses and cattle. Clinical signs include foot tenderness progressing to inability to walk, increased digital pulses, and increased temperature in the hooves. Severe cases with outwardly visible clinical signs are known by the colloquial term founder, and progression of the disease will lead to perforation of the coffin bone through the sole of the hoof or being unable to stand up, requiring euthanasia.

<span class="mw-page-title-main">Meloxicam</span> Nonsteroidal anti-inflammatory drug (NSAID)

Meloxicam, sold under the brand name Mobic among others, is a nonsteroidal anti-inflammatory medication (NSAID) used to treat pain and inflammation in rheumatic diseases and osteoarthritis. It is used by mouth or by injection into a vein. It is recommended that it be used for as short a period as possible and at a low dose.

<span class="mw-page-title-main">Carprofen</span> Non-steroidal anti-inflammatory drug

Carprofen is a nonsteroidal anti-inflammatory drug (NSAID) of the carbazole and propionic acid class that was previously for use in humans and animals but is now only available to veterinarians for prescribing as a supportive treatment for various conditions in animals. Carprofen reduces inflammation by inhibition of COX-1 and COX-2; its specificity for COX-2 varies from species to species. Marketed under many brand names worldwide, carprofen is used as a treatment for inflammation and pain, including joint pain and postoperative pain.

<span class="mw-page-title-main">Oxyphenbutazone</span> Chemical compound

Oxyphenbutazone is a nonsteroidal anti-inflammatory drug (NSAID). It is a metabolite of phenylbutazone.

Exercise-induced pulmonary hemorrhage (EIPH), also known as "bleeding" or a "bleeding attack", refers to the presence of blood in the airways of the lung in association with exercise. EIPH is common in horses undertaking intense exercise, but it has also been reported in human athletes, racing camels and racing greyhounds. Horses that experience EIPH may also be referred to as "bleeders" or as having "broken a blood vessel". In the majority of cases, EIPH is not apparent unless an endoscopic examination of the airways is performed following exercise. This is distinguished from other forms of bleeding from the nostrils, called epistaxis.

<span class="mw-page-title-main">Tepoxalin</span> NSAID anti-inflammatory veterinary drug

Tepoxalin, sold under the brand name Zubrin among others, is a non-steroidal anti-flammatory drug (NSAIDs) generally used in veterinary medicine to reduce swelling in animals with osteoarthritis. In rare circumstances, tepoxalin can also be used in human pharmacology to relieve pain caused by musculoskeletal conditions such as arthritis and hip dysplasia.

<span class="mw-page-title-main">Detomidine</span> Chemical compound

Detomidine is an imidazole derivative and α2-adrenergic agonist, used as a large animal sedative, primarily used in horses. It is usually available as the salt detomidine hydrochloride. It is a prescription medication available to veterinarians sold under various trade names.

<span class="mw-page-title-main">Tiludronic acid</span> Chemical compound

Tiludronic acid is a bisphosphonate used for treatment of Paget's disease of bone in human being medicine. It has the tradename Skelid. In veterinary medicine, tiludronic acid is used to treat navicular disease and bone spavin in horses. Its tradenames are Tildren and Equidronate. It is approved for treatment of navicular disease and distal, tarsal osteoarthritis in Europe, and was approved for treatment of navicular disease in the United States in 2014.

<span class="mw-page-title-main">Meclofenamic acid</span> Chemical compound

Meclofenamic acid is a drug used for joint, muscular pain, arthritis and dysmenorrhea. It is a member of the anthranilic acid derivatives class of nonsteroidal anti-inflammatory drugs (NSAIDs) and was approved by the US FDA in 1980. Like other members of the class, it is a cyclooxygenase (COX) inhibitor, preventing the formation of prostaglandins.

Limb perfusion is a medical technique that is used to deliver drugs locally directly to a site of interest. It is commonly used in human medicine for administration of anticancer drugs directly to an arm or leg. It is also used in veterinary medicine to deliver drugs to a site of infection or injury, as well as for the treatment of cancer in dogs. In both cases, a tourniquet is used to reduce blood flow out of the area that is being treated.

<span class="mw-page-title-main">Romifidine</span> Chemical compound

Romifidine is a drug that is used in veterinary medicine as a sedative mainly in large animals such as horses, although it may be used in a wide variety of species. It is not used in humans, but is closely related in structure to the commonly used drug clonidine.

Colitis X, equine colitis X or peracute toxemic colitis is a catchall term for various fatal forms of acute or peracute colitis found in horses, but particularly a fulminant colitis where clinical signs include sudden onset of severe diarrhea, abdominal pain, shock, and dehydration. Death is common, with 90% to 100% mortality, usually in less than 24 hours. The causative factor may be Clostridium difficile, but it also may be caused by other intestinal pathogens. Horses under stress appear to be more susceptible to developing colitis X, and like the condition pseudomembranous colitis in humans, an association with prior antibiotic use also exists. Immediate and aggressive treatment can sometimes save the horse, but even in such cases, 75% mortality is considered a best-case scenario.

Purpura haemorrhagica is a rare complication of equine strangles and is caused by bleeding from capillaries which results in red spots on the skin and mucous membranes together with oedema (swelling) of the limbs and the head. Purpura hemorrhagica is more common in younger animals.

Equine gastric ulcer syndrome (EGUS) is a common cause of colic and decreased performance in horses. Horses form ulcers in the mucosa of the stomach, leading to pain, decreased appetite, weight loss, and behavioral changes. Treatment generally involves reducing acid production of the stomach and dietary management. Unlike some animals, however, stomach rupture is rare, and the main goal of treating is to reduce pain and improve performance of animals used for showing or racing.

The treatment of equine lameness is a complex subject. Lameness in horses has a variety of causes, and treatment must be tailored to the type and degree of injury, as well as the financial capabilities of the owner. Treatment may be applied locally, systemically, or intralesionally, and the strategy for treatment may change as healing progresses. The end goal is to reduce the pain and inflammation associated with injury, to encourage the injured tissue to heal with normal structure and function, and to ultimately return the horse to the highest level of performance possible following recovery.

<span class="mw-page-title-main">Balanced anesthesia</span> Anesthetic technique

Balanced anesthesia is an anesthetic method for surgical patients during their operation, which was proposed by John Lundy in 1926. The purpose of balanced anesthesia is not only to be less dangerous than using only one drug to make patients general anesthesia but also to minimise the potential adverse side effects which may cause by the anesthetic agents. The concept of balanced anesthesia is that applying two or more medications or techniques in order to help patients to ease pain, relax the muscles and have autonomous reflection suppression. In other words, it is an anesthesia method to maintain stable vital signs. There are numerous factors that come in play when the anesthetist decides to use this method of anesthesia. These factors include, but are not limited to, patients' major organ functions, general condition and compensatory capacity. The anesthetist needs to make use of adequate types, appropriate amounts of agents and the accurate anesthesia method, which will promote the surgery to be successful, safe, and efficient.

Alicia L. Bertone is an American academic, administrator, researcher, and veterinary surgeon. She is a professor and a provost in the Office of Academic Affairs at the Ohio State University. Bertone has worked as the Vice-Provost of Graduate Studies, Associate Vice Provost of Data and Analysis, the ENGIE-Axium Endowed Dean of the Graduate School, and the Trueman Family Endowed Chair at the Ohio State University. Bertone is a Professor of Veterinary Clinical Sciences, and, as the Trueman Endowed Chair, established and directed the Comparative Orthopedic Research Laboratory at the University.

References

  1. McIlwraith CW, Frisbie DD, Kawcak CE (2001). "Nonsteroidal Anti-Inflammatory Drugs". Proc. AAEP. 47: 182–187.
  2. May SA, Lees P (1996). "Nonsteroidal anti-inflammatory drugs". In McIlwraith CW, Trotter GW (eds.). Joint Disease in the Horse. Philadelphia: WB Saunders. pp. 223–237.
  3. Soma LR, Behrend E, Rudy J, Sweeney RW (November 1988). "Disposition and excretion of flunixin meglumine in horses". American Journal of Veterinary Research. 49 (11): 1894–8. PMID   3247913.
  4. 1 2 Foreman JH, Bergstrom BE, Golden KS, Roark JJ, Coren DS, Foreman CR, Schumacher SA (December 2012). "Dose titration of the clinical efficacy of intravenously administered flunixin meglumine in a reversible model of equine foot lameness". Equine Veterinary Journal. Supplement. 44 (43): 17–20. doi: 10.1111/j.2042-3306.2012.00655.x . PMID   23447872.
  5. Jochle W, Moore JN, Brown J, Baker GJ, Lowe JE, Fubini S, Reeves MJ, Watkins JP, White NA (June 1989). "Comparison of detomidine, butorphanol, flunixin meglumine and xylazine in clinical cases of equine colic". Equine Veterinary Journal. Supplement. 21 (7): 111–6. doi:10.1111/j.2042-3306.1989.tb05668.x. PMID   9118091.
  6. Hilton HG, Magdesian KG, Groth AD, Knych H, Stanley SD, Hollingsworth SR (2011). "Distribution of flunixin meglumine and firocoxib into aqueous humor of horses". Journal of Veterinary Internal Medicine. 25 (5): 1127–33. doi: 10.1111/j.1939-1676.2011.0763.x . PMID   21781166.
  7. Bryant CE, Farnfield BA, Janicke HJ (February 2003). "Evaluation of the ability of carprofen and flunixin meglumine to inhibit activation of nuclear factor kappa B". American Journal of Veterinary Research. 64 (2): 211–5. doi: 10.2460/ajvr.2003.64.211 . PMID   12602591.
  8. Videla R, Andrews FM (August 2009). "New perspectives in equine gastric ulcer syndrome". The Veterinary Clinics of North America. Equine Practice. 25 (2): 283–301. doi:10.1016/j.cveq.2009.04.013. PMID   19580940.
  9. McConnico RS, Morgan TW, Williams CC, Hubert JD, Moore RM (November 2008). "Pathophysiologic effects of phenylbutazone on the right dorsal colon in horses". American Journal of Veterinary Research. 69 (11): 1496–505. doi: 10.2460/ajvr.69.11.1496 . PMID   18980433.
  10. Black HE (1986). "Renal toxicity of non-steroidal anti-inflammatory drugs". Toxicologic Pathology. 14 (1): 83–90. doi:10.1177/019262338601400110. PMID   3487106. S2CID   28865193.
  11. "FEI Prohibited Substances List". 28 October 2013. Retrieved 23 January 2016.
  12. "FEI List of Detection Times" (PDF). Retrieved 23 January 2016.
  13. Popot MA, Garcia P, Bonnaire Y (December 2011). "Doping control in horses: housing conditions and oral recycling of flunixin by ingestion of contaminated straw". Journal of Veterinary Pharmacology and Therapeutics. 34 (6): 612–4. doi:10.1111/j.1365-2885.2011.01276.x. PMID   21995754.
  14. Peek SF, Semrad SD, Perkins GA (January 2003). "Clostridial myonecrosis in horses (37 cases 1985-2000)". Equine Veterinary Journal. 35 (1): 86–92. doi:10.2746/042516403775467513. PMID   12553469.
  15. Foreman JH, Ruemmler R (November 2011). "Phenylbutazone and flunixin meglumine used singly or in combination in experimental lameness in horses". Equine Veterinary Journal. Supplement. 43 (40): 12–7. doi: 10.1111/j.2042-3306.2011.00485.x . PMID   22082440.
  16. Reed SK, Messer NT, Tessman RK, Keegan KG (March 2006). "Effects of phenylbutazone alone or in combination with flunixin meglumine on blood protein concentrations in horses". American Journal of Veterinary Research. 67 (3): 398–402. doi:10.2460/ajvr.67.3.398. PMID   16506899.
  17. "Allevinix 50 mg/ml solution for injection for cattle, pigs and horses". NOAH Compendium. National Office of National Health. Retrieved 19 April 2017.
  18. "Finadyne Transdermal 50 mg/ml pour-on solution for cattle". NOAH Compendium. National Office of National Health. Retrieved 19 April 2017.
  19. Smith JS, Marmulak TL, Angelos JA, Lin Z, Rowe JD, Carlson JL, Shelver WL, Lee EA, Tell LA (2020). "Pharmacokinetic Parameters and Estimated Milk Withdrawal Intervals for Domestic Goats (Capra Aegagrus Hircus) After Administration of Single and Multiple Intravenous and Subcutaneous Doses of Flunixin Meglumine". Frontiers in Veterinary Science. 7: 213. doi: 10.3389/fvets.2020.00213 . PMC   7248982 . PMID   32509803.