HELLP syndrome

Last updated
HELLP syndrome
Specialty Obstetrics
Symptoms Feeling tired, retaining fluid, headache, nausea, upper abdominal pain, blurry vision, seizures [1]
Complications Disseminated intravascular coagulation (DIC), placental abruption, kidney failure, pulmonary edema [1]
Usual onsetLast 3 months of pregnancy or shortly after childbirth [1]
TypesComplete, incomplete [2]
CausesUnknown [1]
Risk factors Preeclampsia, eclampsia, previously having HELLP, mother older than 25 years
Diagnostic method Blood tests [2]
Differential diagnosis Viral hepatitis, thrombotic thrombocytopenic purpura, cholangitis, hemolytic uremic syndrome [2]
TreatmentDelivery of the baby as soon as possible, management of blood pressure [1] [2]
Prognosis <1% risk of death (mother); 7.3% to 11.9% risk of death (child) [3]
Frequency~0.7% of pregnancies [2]

HELLP syndrome is a complication of pregnancy; the acronym stands for hemolysis, elevated liver enzymes, and low platelet count. [1] It usually begins during the last three months of pregnancy or shortly after childbirth. [1] Symptoms may include feeling tired, retaining fluid, headache, nausea, upper right abdominal pain, blurry vision, nosebleeds, and seizures. [1] Complications may include disseminated intravascular coagulation, placental abruption, and kidney failure. [1]

Contents

The cause is unknown. [1] The condition occurs in association with pre-eclampsia or eclampsia. [1] Other risk factors include previously having the syndrome and a mother older than 25 years. [1] The underlying mechanism may involve abnormal placental development. [4] Diagnosis is generally based on blood tests finding signs of red blood cell breakdown (lactate dehydrogenase greater than 600 U/L), an aspartate transaminase greater than 70 U/L, and platelets less than 100×109/l. [2] If not all the criteria are present, the condition is incomplete. [2]

Treatment generally involves delivery of the baby as soon as possible. [1] This is particularly true if the pregnancy is beyond 34 weeks of gestation. [2] Medications may be used to decrease blood pressure and blood transfusions may be required. [1]

HELLP syndrome occurs in about 0.7% of pregnancies and affects about 15% of women with eclampsia or severe pre-eclampsia. [5] [2] Death of the mother is uncommon (< 1%). [1] [3] Outcomes in the babies are generally related to how premature they are at birth. [1] The syndrome was first named in 1982 by American gynaecologist Louis Weinstein. [2]

Signs and symptoms

The first signs of HELLP usually start appearing midway through the third trimester, though the signs can appear in earlier and later stages. [6] It is highly associated with known pre-eclampsia. Risk factors for pre-eclampsia include older age, uncontrolled hypertension, diabetes mellitus, and obesity. Symptoms for HELLP vary in severity and between individuals and are commonly mistaken with normal pregnancy symptoms, especially if they are not severe. [7]

HELLP syndrome patients experience general discomfort followed by severe epigastric pain or right upper abdominal quadrant pain, accompanied by nausea, vomiting, backache, anaemia, and hypertension. Some patients may also have a headache and visual issues. These symptoms may also become more severe at night. [8] [9] [10] [11] [12] As the condition progresses and worsens, a spontaneous hematoma occurs following the rupture of the liver capsule, which occurs more frequently in the right lobe. The presence of any combinations of these symptoms, subcapsular liver hematoma in particular, warrants an immediate check-up due to the high morbidity and mortality rates of this condition. [13] [14] [15]

Risk factors

Elevated body mass index and metabolic disorders, as well as antiphospholipid syndrome, significantly increase the risk of HELLP syndrome in all female patients. Females who have had or are related to a female with previous HELLP syndrome complications tend to be at a higher risk in all their subsequent pregnancies. [16] [17] [18]

The risk of HELLP syndrome is not conclusively associated with a specific genetic variation, but likely a combination of genetic variations, such as FAS gene, VEGF gene, glucocorticoid receptor gene and the tol-like receptor gene, increase the risk. [17] [19] [20] [21] [22]

Pathophysiology

The pathophysiology is still unclear and an exact cause is yet to be found. However, it shares a common mechanism, which is endothelial cell injury, with other conditions, such as acute kidney injury and thrombotic thrombocytopenic purpura. [23] [24] Increasing the understanding of HELLP syndrome's pathophysiology will enhance diagnostic accuracy, especially in the early stages. This will lead to advancements in the prevention, management, and treatment of the condition, which will increase the likelihood of both maternal and fetal survival and recovery. [6] [25]

Inflammation and coagulation

As a result of endothelial cell injury, a cascade of pathological reactions manifests and become increasingly severe and even fatal as signs and symptoms progress. Following endothelial injury, vasospasms and platelet activation occur alongside the decreased release of the endothelium-derived relaxing factor and increased the release of von Willebrand factor (vWF), leading to general activation of the coagulation cascade and inflammation. Placental components, such as inflammatory cytokines and syncytiotrophoblast particles interact with the maternal immune system and endothelial cells, further promoting coagulation and inflammation. [26] [27] These interactions also elevate leukocyte numbers and interleukin concentrations, as well as increase complement activity. [28] [29]

Low platelet count

vWF degradation in HELLP syndrome is inhibited due to decreased levels of degrading proteins, leading to an increased exposure of platelets to vWF. As a result, thrombotic microangiopathies develop and lead to thrombocytopenia. [30]

Blood breakdown

As a result of the high number of angiopathies, the erythrocytes fragment as they pass through the blood vessels with damaged endothelium and large fibrin networks, leading to macroangiopathic haemolytic anaemia. As a consequence of hemolysis, lactic acid dehydrogenase (LDH) and hemoglobin are released, with the latter binding to serum bilirubin or haptoglobin. [8] [16]

Liver

During the coagulation cascade, fibrin is deposited in the liver and leads to hepatic sinusoidal obstruction and vascular congestion, which increase intrahepatic pressure. Placenta-derived FasL (CD95L), which is toxic to human hepatocytes, leads to hepatocyte apoptosis and necrosis by inducing the expression of TNFα and results in the release of liver enzymes. Hepatic damages are worsened by the disrupted portal and total hepatic blood flow that result as a consequence of the microangiopathies. Collectively, widespread endothelial dysfunction and hepatocellular damage result in global hepatic dysfunction often leading to liver necrosis, haemorrhages, and capsular rupture. [31] [32] [33]

Diagnosis

Early and accurate diagnosis, which relies on laboratory tests and imaging exams, is essential for treatment and management and significantly reduces the morbidity rate. However, diagnosis of the syndrome is challenging, especially due to the variability in the signs and symptoms and the lack of consensus amongst healthcare professionals. Similarities to other conditions, as well as normal pregnancy features, commonly lead to misdiagnosed cases or more often, delayed diagnosis. [6] [25]

There is a general consensus regarding the main three diagnostic criteria of HELLP syndrome, which include hepatic dysfunction, thrombocytopenia and microangiopathic haemolytic anaemia in patients suspected to have preeclampsia. [ citation needed ]

A number of other, but less conclusive, clinical diagnostic criteria are also used in diagnosis alongside the main clinical diagnostic criteria for HELLP syndrome.

Imaging tests, such as ultrasound, tomography or magnetic resonance imaging (MRI), are instrumental in the correct diagnosis of HELLP syndrome in patients with suspected liver dysfunction. Unurgent cases must undergo MRI, but laboratory tests, such as glucose determination, are more encouraged in mild cases of HELLP syndrome. [31] [40]

Classification

A classification system, which was developed in Mississippi, measures the severity of the syndrome using the lowest observed platelet count in the patients alongside the appearance of the other two main clinical criteria. Class I is the most severe, with a relatively high risk of morbidity and mortality, compared to the other two classes. [41]

Another classification system, introduced in Memphis, categorises HELLP syndrome based on its expression.

Treatment

The only current recommended and most effective treatment is delivery of the baby, as the signs and symptoms diminish and gradually disappear following the delivery of the placenta. Prompt delivery is the only viable option in cases with multiorgan dysfunction or multiorgan failure, haemorrhage and considerable danger to the fetus. Certain medications are also used to target and alleviate specific symptoms. [31] [2] [43] [44]

Corticosteroids are of unclear benefit, though there is tentative evidence that they can increase the mother's platelet count. [45] [46]

Prognosis

With treatment, maternal mortality is about 1 percent, although complications such as placental abruption, acute kidney injury, subcapsular liver hematoma, permanent liver damage, and retinal detachment occur in about 25% of women. Perinatal mortality (stillbirths plus death in infancy) is between 73 and 119 per 1000 babies of woman with HELLP, while up to 40% are small for gestational age. [47] In general, however, factors such as gestational age are more important than the severity of HELLP in determining the outcome in the baby. [48]

Epidemiology

HELLP syndrome affects 10-20% of pre-eclampsia patients and is a complication in 0.5-0.9% of all pregnancies. [6] [49] Caucasian women over 25 years of age comprise most of the diagnosed HELLP syndrome cases. [50] In 70% of cases before childbirth, the condition manifests in the third trimester, but 10% and 20% of the cases exhibit symptoms before and after the third trimester, respectively. Postpartum occurrences are also observed in 30% of all HELLP syndrome cases. [51]

History

HELLP syndrome was identified as a distinct clinical entity (as opposed to severe pre-eclampsia) by Dr. Louis Weinstein in 1982. [31] In a 2005 article, Weinstein wrote that the unexplained postpartum death of a woman who had haemolysis, abnormal liver function, thrombocytopenia, and hypoglycemia motivated him to review the medical literature and to compile information on similar women. [10] He noted that cases with features of HELLP had been reported as early as 1954. [10] [52]

See also

Related Research Articles

Liver function tests, also referred to as a hepatic panel, are groups of blood tests that provide information about the state of a patient's liver. These tests include prothrombin time (PT/INR), activated partial thromboplastin time (aPTT), albumin, bilirubin, and others. The liver transaminases aspartate transaminase and alanine transaminase are useful biomarkers of liver injury in a patient with some degree of intact liver function.

<span class="mw-page-title-main">Eclampsia</span> Pre-eclampsia characterized by the presence of seizures

Eclampsia is the onset of seizures (convulsions) in a woman with pre-eclampsia. Pre-eclampsia is a hypertensive disorder of pregnancy that presents with three main features: new onset of high blood pressure, large amounts of protein in the urine or other organ dysfunction, and edema. If left untreated, pre-eclampsia can result in long-term consequences for the mother, namely increased risk of cardiovascular diseases and associated complications. In more severe cases, it may be fatal for both the mother and the fetus.

<span class="mw-page-title-main">Pre-eclampsia</span> Hypertension occurring during pregnancy

Pre-eclampsia is a multi-system disorder specific to pregnancy, characterized by the onset of high blood pressure and often a significant amount of protein in the urine. When it arises, the condition begins after 20 weeks of pregnancy. In severe cases of the disease there may be red blood cell breakdown, a low blood platelet count, impaired liver function, kidney dysfunction, swelling, shortness of breath due to fluid in the lungs, or visual disturbances. Pre-eclampsia increases the risk of undesirable as well as lethal outcomes for both the mother and the fetus including preterm labor. If left untreated, it may result in seizures at which point it is known as eclampsia.

Fetal distress, also known as non-reassuring fetal status, is a condition during pregnancy or labor in which the fetus shows signs of inadequate oxygenation. Due to its imprecision, the term "fetal distress" has fallen out of use in American obstetrics. The term "non-reassuring fetal status" has largely replaced it. It is characterized by changes in fetal movement, growth, heart rate, and presence of meconium stained fluid.

<span class="mw-page-title-main">Gestational hypertension</span> Medical condition

Gestational hypertension or pregnancy-induced hypertension (PIH) is the development of new hypertension in a pregnant woman after 20 weeks' gestation without the presence of protein in the urine or other signs of pre-eclampsia. Gestational hypertension is defined as having a blood pressure greater than 140/90 on two occasions at least 6 hours apart.

<span class="mw-page-title-main">Polyhydramnios</span> Excess of amniotic fluid in the amniotic sac

Polyhydramnios is a medical condition describing an excess of amniotic fluid in the amniotic sac. It is seen in about 1% of pregnancies. It is typically diagnosed when the amniotic fluid index (AFI) is greater than 24 cm. There are two clinical varieties of polyhydramnios: chronic polyhydramnios where excess amniotic fluid accumulates gradually, and acute polyhydramnios where excess amniotic fluid collects rapidly.

<span class="mw-page-title-main">Complications of pregnancy</span> Medical condition

Complications of pregnancy are health problems that are related to, or arise during pregnancy. Complications that occur primarily during childbirth are termed obstetric labor complications, and problems that occur primarily after childbirth are termed puerperal disorders. While some complications improve or are fully resolved after pregnancy, some may lead to lasting effects, morbidity, or in the most severe cases, maternal or fetal mortality.

<span class="mw-page-title-main">Abdominal pregnancy</span> Medical condition

An abdominal pregnancy is a rare type of ectopic pregnancy where the embryo or fetus is growing and developing outside the uterus, in the abdomen, and not in a fallopian tube, an ovary, or the broad ligament.

<span class="mw-page-title-main">Intrauterine hypoxia</span> Medical condition when the fetus is deprived of sufficient oxygen

Intrauterine hypoxia occurs when the fetus is deprived of an adequate supply of oxygen. It may be due to a variety of reasons such as prolapse or occlusion of the umbilical cord, placental infarction, maternal diabetes and maternal smoking. Intrauterine growth restriction may cause or be the result of hypoxia. Intrauterine hypoxia can cause cellular damage that occurs within the central nervous system. This results in an increased mortality rate, including an increased risk of sudden infant death syndrome (SIDS). Oxygen deprivation in the fetus and neonate have been implicated as either a primary or as a contributing risk factor in numerous neurological and neuropsychiatric disorders such as epilepsy, attention deficit hyperactivity disorder, eating disorders and cerebral palsy.

Acute fatty liver of pregnancy is a rare life-threatening complication of pregnancy that occurs in the third trimester or the immediate period after delivery. It is thought to be caused by a disordered metabolism of fatty acids by mitochondria in the fetus, caused by long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. This leads to decreased metabolism of long chain fatty acids by the feto-placental unit, causing subsequent rise in hepatotoxic fatty acids in maternal plasma. The condition was previously thought to be universally fatal, but aggressive treatment by stabilizing the mother with intravenous fluids and blood products in anticipation of early delivery has improved prognosis.

<span class="mw-page-title-main">Intrahepatic cholestasis of pregnancy</span> Medical condition

Intrahepatic cholestasis of pregnancy (ICP), also known as obstetric cholestasis, cholestasis of pregnancy, jaundice of pregnancy, and prurigo gravidarum, is a medical condition in which cholestasis occurs during pregnancy. It typically presents with itching and can lead to complications for both mother and fetus.

<span class="mw-page-title-main">HADHA</span> Protein-coding gene in the species Homo sapiens

Trifunctional enzyme subunit alpha, mitochondrial also known as hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase, alpha subunit is a protein that in humans is encoded by the HADHA gene. Mutations in HADHA have been associated with trifunctional protein deficiency or long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency.

Mirror syndrome, triple edema or Ballantyne syndrome is a rare disorder affecting pregnant women. It describes the unusual association of fetal and placental hydrops with maternal preeclampsia.

<span class="mw-page-title-main">Percutaneous umbilical cord blood sampling</span>

Percutaneous umbilical cord blood sampling (PUBS), also called cordocentesis, fetal blood sampling, or umbilical vein sampling is a diagnostic genetic test that examines blood from the fetal umbilical cord to detect fetal abnormalities. Fetal and maternal blood supply are typically connected in utero with one vein and two arteries to the fetus. The umbilical vein is responsible for delivering oxygen rich blood to the fetus from the mother; the umbilical arteries are responsible for removing oxygen poor blood from the fetus. This allows for the fetus’ tissues to properly perfuse. PUBS provides a means of rapid chromosome analysis and is useful when information cannot be obtained through amniocentesis, chorionic villus sampling, or ultrasound ; this test carries a significant risk of complication and is typically reserved for pregnancies determined to be at high risk for genetic defect. It has been used with mothers with immune thrombocytopenic purpura.

Lupus and pregnancy can present some particular challenges for both mother and child.

<span class="mw-page-title-main">High-risk pregnancy</span> Medical condition

A high-risk pregnancy is a pregnancy where the mother or the fetus has an increased risk of adverse outcomes compared to uncomplicated pregnancies. No concrete guidelines currently exist for distinguishing “high-risk” pregnancies from “low-risk” pregnancies; however, there are certain studied conditions that have been shown to put the mother or fetus at a higher risk of poor outcomes. These conditions can be classified into three main categories: health problems in the mother that occur before she becomes pregnant, health problems in the mother that occur during pregnancy, and certain health conditions with the fetus.

<span class="mw-page-title-main">Upshaw–Schulman syndrome</span> Medical condition

Upshaw–Schulman syndrome (USS) is the recessively inherited form of thrombotic thrombocytopenic purpura (TTP), a rare and complex blood coagulation disease. USS is caused by the absence of the ADAMTS13 protease resulting in the persistence of ultra large von Willebrand factor multimers (ULVWF), causing episodes of acute thrombotic microangiopathy with disseminated multiple small vessel obstructions. These obstructions deprive downstream tissues from blood and oxygen, which can result in tissue damage and death. The presentation of an acute USS episode is variable but usually associated with thrombocytopenia, microangiopathic hemolytic anemia (MAHA) with schistocytes on the peripheral blood smear, fever and signs of ischemic organ damage in the brain, kidney and heart.

Hypertensive disease of pregnancy, also known as maternal hypertensive disorder, is a group of high blood pressure disorders that include preeclampsia, preeclampsia superimposed on chronic hypertension, gestational hypertension, and chronic hypertension.

Chaniece Wallace, a black woman and physician, died at 30 years of age from complications of pregnancy two days after the birth of her daughter. Her death is seen as preventable and is viewed in the context of high rates of maternal mortality in the United States, particularly among the African American population. It is cited as an example in medical and scholarly publications to call for improved health outcomes in the black U.S. population. Wallace died despite several factors seen as protective: she was "highly educated, employed as a health care practitioner, had access to health care, and had a supportive family." Wallace was a fourth year pediatric chief resident at the Indiana University School of Medicine and was working at Riley Children's Health Hospital at the time of her death.

Annettee Olivia Nakimuli is a Ugandan obstetrician, gynecologist, medical researcher, academic and academic administrator. Since 17 February 2021, she serves as the Dean of Makerere University School of Medicine, the oldest medical school in East Africa. She concurrently serves as the Head of Department of Obstetrics and Gynecology at the same medical school, a role she has served in since 2016. She is also the President of the East, Central and Southern Africa College of Obstetrics and Gynecology.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 "HELLP syndrome". Genetic and Rare Diseases Information Center (GARD) – an NCATS Program. 2018. Retrieved 5 October 2018.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Haram K, Svendsen E, and Abildgaard U (February 2009). "The HELLP syndrome: clinical issues and management. A Review". BMC Pregnancy Childbirth. 9: 8. doi: 10.1186/1471-2393-9-8 . PMC   2654858 . PMID   19245695.
  3. 1 2 Odze, Robert D.; Goldblum, John R. (2009). Surgical Pathology of the GI Tract, Liver, Biliary Tract, and Pancreas. Elsevier Health Sciences. p. 1240. ISBN   9781416040590.
  4. Cohen, Hannah; O'Brien, Patrick (2015). Disorders of Thrombosis and Hemostasis in Pregnancy: A Guide to Management. Springer. p. 305. ISBN   9783319151205.
  5. "Preeclampsia and Eclampsia". Merck Manuals Consumer Version. March 2018. Retrieved 5 October 2018.
  6. 1 2 3 4 Sibai BM, Taslimi MM, el-Nazer A, Amon E, Mabie BC, Ryan GM (September 1986). "Maternal-perinatal outcome associated with the syndrome of hemolysis, elevated liver enzymes, and low platelets in severe preeclampsia-eclampsia". J Perinat Med. 155 (3): 501–9. doi:10.1016/0002-9378(86)90266-8. PMID   3529964.
  7. Visser W, Wallenburg HC (February 1995). "Temporising management of severe pre-eclampsia with and without the HELLP syndrome". Br J Obstet Gynaecol. 102 (2): 111–7. doi:10.1111/j.1471-0528.1995.tb09062.x. PMID   7756201. S2CID   20571108.
  8. 1 2 3 Sibai BM (May 2004). "Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count". Obstet Gynecol. 103 (5 Pt 1): 981–91. doi:10.1097/01.AOG.0000126245.35811.2a. PMID   15121574.
  9. 1 2 Sibai BM (February 1990). "he HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets): much ado about nothing?". Am J Obstet Gynecol. 162 (2): 311–6. doi:10.1016/0002-9378(90)90376-i. PMID   2309811.
  10. 1 2 3 Weinstein L (September 2005). "It has been a great ride: The history of HELLP syndrome". Am J Obstet Gynecol. 193 (3 Pt 1): 860–3. doi:10.1016/j.ajog.2005.06.058. PMID   16150288.
  11. Aarnoudse JG, Houthoff HJ, Weits J, Vellenga E, Huisjes HJ (February 1986). "A syndrome of liver damage and intravascular coagulation in the last trimester of normotensive pregnancy. A clinical and histopathological study". Br J Obstet Gynaecol. 93 (2): 145–55. doi:10.1111/j.1471-0528.1986.tb07879.x. PMID   3511956. S2CID   196422444.
  12. Araujo AC, Leao MD, Nobrega MH, Bezerra PF, Pereira FV, Dantas EM, Azevedo GD, Jeronimo SM (July 2006). "Characteristics and treatment of hepatic rupture caused by HELLP syndrome". Am J Obstet Gynecol. 1995 (1): 129–33. doi:10.1016/j.ajog.2006.01.016. PMID   16579935.
  13. Strand S, Strand D, Seufert R, Mann A, Lotz J, Blessing M, Lahn M, Wunsch A, Broering DC, Hahn U, Grischke EM, Rogiers X, Otto G, Gores GJ, Galle PR (March 2004). "Placenta-derived CD95 ligand causes liver damage in hemolysis, elevated liver enzymes, and low platelet count syndrome". Gastroenterology. 126 (3): 849–58. doi: 10.1053/j.gastro.2003.11.054 . PMID   14988839.
  14. Rinehart BK, Terrone DA, Magann EF, Martin RW, May WL, Martin JN Jr (March 1996). "Preeclampsia-associated hepatic hemorrhage and rupture: mode of management related to maternal and perinatal outcome". Obstet Gynecol Surv. 54 (3): 196–202. doi:10.1097/00006254-199903000-00024. PMID   10071839.
  15. Wicke C, Pereira PL, Neeser E, Flesch I, Rodegerdts EA, Becker HD (January 2004). "Subcapsular liver hematoma in HELLP syndrome: Evaluation of diagnostic and therapeutic options--a unicenter study". Am J Obstet Gynecol. 190 (1): 106–12. doi:10.1016/j.ajog.2003.08.029. PMID   14749644.
  16. 1 2 Lachmeijer AM, Arngrimsson R, Bastiaans EJ, Frigge ML, Pals G, Sigurdardottir S, Stefansson H, Palsson B, Nicolae D, Kong A, Aarnoudse JG, Gulcher JR, Dekker GA, ten Kate LP, Stefansson K (October 2001). "A genome-wide scan for preeclampsia in the Netherlands". Eur J Hum Genet. 9 (10): 758–64. doi: 10.1038/sj.ejhg.5200706 . PMID   11781687.
  17. 1 2 Habli M, Eftekhari N, Wiebracht E, Bombrys A, Khabbaz M, How H, Sibai B (October 2009). "Long-term maternal and subsequent pregnancy outcomes 5 years after hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome". Am J Obstet Gynecol. 201 (4): 385 e1–5. doi:10.1016/j.ajog.2009.06.033. PMID   19716544.
  18. Hupuczi P, Rigo B, Sziller I, Szabo G, Szigeti Z, Papp Z (2006). "Follow-up analysis of pregnancies complicated by HELLP syndrome". Fetal Diagn Ther. 21 (6): 519–22. doi:10.1159/000095665. PMID   16969007. S2CID   25427426.
  19. Sziller I, Hupuczi P, Normand N, Halmos A, Papp Z, Witkin SS (March 2009). "Fas (TNFRSF6) gene polymorphism in pregnant women with hemolysis, elevated liver enzymes, and low platelets and in their neonates". Obstet Gynecol. 107 (3): 582–7. doi: 10.1097/01.AOG.0000195824.51919.81 . PMID   16507928. S2CID   25044126.
  20. Nagy B, Savli H, Molvarec A, Varkonyi T, Rigo B, Hupuczi P, Rigo J Jr (2006). "Vascular endothelial growth factor (VEGF) polymorphisms in HELLP syndrome patients determined by quantitative real-time PCR and melting curve analyses". Clin Chim Acta. 389 (1–2): 126–31. doi:10.1016/j.cca.2007.12.003. PMID   18167313.
  21. Bertalan R, Patocs A, Nagy B, Derzsy Z, Gullai N, Szappanos A (July 2009). "Overrepresentation of BclI polymorphism of the glucocorticoid receptor gene in pregnant women with HELLP syndrome". Clin Chim Acta. 405 (1–2): 148–52. doi:10.1016/j.cca.2009.03.046. PMID   19336230.
  22. van Rijn BB, Franx A, Steegers EA, de Groot CJ, Bertina RM, Pasterkamp G (April 2008). "Maternal TLR4 and NOD2 gene variants, pro-inflammatory phenotype and susceptibility to early-onset preeclampsia and HELLP syndrome". PLOS ONE. 3 (4): e1865. Bibcode:2008PLoSO...3.1865V. doi: 10.1371/journal.pone.0001865 . PMC   2270909 . PMID   18382655.
  23. 1 2 Geary M (August 1997). "The HELLP syndrome". Br J Obstet Gynaecol. 104 (8): 877–91. doi: 10.1111/j.1471-0528.1997.tb14346.x . PMID   9255078. S2CID   45100401.
  24. Sibai BM, Kustermann L, Velasco J (July 1994). "DCurrent understanding of severe preeclampsia, pregnancy-associated hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, hemolysis, elevated liver enzymes, and low platelet syndrome, and postpartum acute renal failure: different clinical syndromes or just different names?". Curr Opin Nephrol Hypertens. 3 (4): 436–45. doi:10.1097/00041552-199407000-00010. PMID   8076148.
  25. 1 2 Benedetto C, Marozio L, Tancredi A, Picardo E, Nardolillo P, Tavella AM, Salton L (2011). "Biochemistry of HELLP syndrome". Adv Clin Chem. Advances in Clinical Chemistry. 53: 85–104. doi:10.1016/B978-0-12-385855-9.00004-7. ISBN   9780123858559. PMID   21404915.
  26. Gardiner C, Tannetta DS, Simms CA, Harrison P, Redman CW, Sargent IL (2011). "Syncytiotrophoblast microvesicles released from pre-eclampsia placentae exhibit increased tissue factor activity". PLOS ONE. 6 (10): e26313. Bibcode:2011PLoSO...626313G. doi: 10.1371/journal.pone.0026313 . PMC   3194796 . PMID   22022598.
  27. Hulstein JJ, van Runnard Heimel PJ, Franx A, Lenting PJ, Bruinse HW, Silence K, de Groot PG, Fijnheer R (December 2006). "Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome". PLOS ONE. 4 (12): 2569–75. doi: 10.1111/j.1538-7836.2006.02205.x . PMID   16968329. S2CID   2270586.
  28. Terrone DA, Rinehart BK, May WL, Moore A, Magann EF, Martin JN Jr (August 2000). "SLeukocytosis is proportional to HELLP syndrome severity: evidence for an inflammatory form of preeclampsia". South Med J. 93 (8): 768–71. doi:10.1097/00007611-200093080-00005. PMID   10963506.
  29. Haeger M, Unander M, Norder-Hansson B, Tylman M, Bengtsson A (January 1992). "Complement, neutrophil, and macrophage activation in women with severe preeclampsia and the syndrome of hemolysis, elevated liver enzymes, and low platelet count". Obstet Gynecol. 79 (1): 19–26. PMID   1727579.
  30. Lattuada A, Rossi E, Calzarossa C, Candolfi R, Mannucci PM (September 2003). "Mild to moderate reduction of a von Willebrand factor cleaving protease (ADAMTS-13) in pregnant women with HELLP microangiopathic syndrome". Haematologica. 88 (9): 1029–34. PMID   12969811.
  31. 1 2 3 4 5 Weinstein L (January 1982). "Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy". Am J Obstet Gynecol. 142 (2): 159–67. doi:10.1016/s0002-9378(16)32330-4. PMID   7055180.
  32. 1 2 Norwitz ER, Hsu CD, Repke JT (June 2002). "Acute complications of preeclampsia". Clin Obstet Gynecol. 45 (2): 308–29. doi:10.1097/00003081-200206000-00004. PMID   12048392. S2CID   32982061.
  33. Stevenson JT, Graham DJ (September 1995). "Hepatic hemorrhage and the HELLP syndrome: a surgeon's perspective". Am Surg. 61 (9): 756–60. PMID   7661469.
  34. Martin JN Jr, Rinehart BK, May WL, Magann EF, Terrone DA, Blake PG (June 1999). "The spectrum of severe preeclampsia: comparative analysis by HELLP (hemolysis, elevated liver enzyme levels, and low platelet count) syndrome classification". Am J Obstet Gynecol. 180 (6 Pt 1): 1373–84. doi:10.1016/s0002-9378(99)70022-0. PMID   10368474.
  35. Martin JN Jr, Rose CH, Briery CM (October 2006). "Understanding and managing HELLP syndrome: the integral role of aggressive glucocorticoids for mother and child". Am J Obstet Gynecol. 195 (4): 914–34. doi:10.1016/j.ajog.2005.08.044. PMID   16631593.
  36. Martin JN Jr, Blake PG, Perry KG Jr, McCaul JF, Hess LW, Martin RW (June 1992). "The natural history of HELLP syndrome: patterns of disease progression and regression". Am J Obstet Gynecol. 164 (6 Pt 1): 1500–9, discussion 1509–13. doi:10.1016/0002-9378(91)91429-z. PMID   2048596.
  37. Catanzarite VA, Steinberg SM, Mosley CA, Landers CF, Cousins LM, Schneider JM (September 1995). "Severe preeclampsia with fulminant and extreme elevation of aspartate aminotransferase and lactate dehydrogenase levels: high risk for maternal death". Am J Perinatol. 12 (5): 310–3. doi:10.1055/s-2007-994482. PMID   8540929. S2CID   6773047.
  38. Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK (November 1989). "Preeclampsia: an endothelial cell disorder". Am J Obstet Gynecol. 161 (5): 1200–4. doi:10.1016/0002-9378(89)90665-0. PMID   2589440. S2CID   7064503.
  39. Sibai BM (July 1996). "Treatment of hypertension in pregnant women". N Engl J Med. 335 (45): 257–65. doi:10.1056/NEJM199607253350407. PMID   8657243.
  40. Weinstein L (November 1985). "Preeclampsia/eclampsia with hemolysis, elevated liver enzymes, and thrombocytopenia". Obstet Gynecol. 66 (5): 657–60. PMID   4058824.
  41. Martin JN Jr, Blake PG, Lowry SL, Perry KG Jr, Files JC, Morrison JC (November 1990). "Pregnancy complicated by preeclampsia-eclampsia with the syndrome of hemolysis, elevated liver enzymes, and low platelet count: how rapid is postpartum recovery?". Obstet Gynecol. 76 (5 Pt 1): 737–41. doi:10.1097/00006250-199011000-00001. PMID   2216215.
  42. Audibert F, Friedman SA, Frangieh AY, Sibai BM (August 1996). "Clinical utility of strict diagnostic criteria for the HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome". Am J Obstet Gynecol. 175 (2): 460–4. doi:10.1016/s0002-9378(96)70162-x. PMID   8765269.
  43. Haddad B, Barton JR, Livingston JC, Chahine R, Sibai BM (August 2000). "Risk factors for adverse maternal outcomes among women with HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome". Am J Obstet Gynecol. 183 (2): 444–8. doi:10.1067/mob.2000.105915. PMID   10942484.
  44. Rath W, Loos W, Kuhn W, Graeff H (August 1990). "The importance of early laboratory screening methods for maternal and fetal outcome in cases of HELLP syndrome". Eur J Obstet Gynecol Reprod Biol. 36 (1–2): 43–51. doi:10.1016/0028-2243(90)90048-6. PMID   2365128.
  45. Woudstra, DM; Chandra, S; Hofmeyr, GJ; Dowswell, T (8 September 2010). "Corticosteroids for HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome in pregnancy". The Cochrane Database of Systematic Reviews (9): CD008148. doi:10.1002/14651858.CD008148.pub2. PMC   4171033 . PMID   20824872.
  46. Aloizos S, Seretis C, Liakos N, Aravosita P, Mystakelli C, Kanna E, Gourgiotis (May 2013). "HELLP syndrome: understanding and management of a pregnancy-specific disease". J Obstet Gynaecol. 33 (4): 331–7. doi:10.3109/01443615.2013.775231. PMID   23654309. S2CID   9250437.
  47. Belfort, Michael A.; Steven Thornton; George R. Saade (2002). Hypertension in Pregnancy. CRC Press. pp. 159–60. ISBN   9780824708276 . Retrieved 2012-04-13.
  48. Stevenson, David Kendal; William E. Benītz (2003). Fetal and Neonatal Brain Injury. Cambridge University Press. p. 260. ISBN   9780521806916 . Retrieved 2012-04-13.
  49. Santema JG, Koppelaar I, Wallenburg HC (January 1995). "Hypertensive disorders in twin pregnancy". Eur J Obstet Gynecol Reprod Biol. 58 (1): 13–9. doi:10.1016/0028-2243(94)01982-d. hdl: 1765/61934 . PMID   7758654.
  50. Padden MO (September 1999). "HELLP syndrome: recognition and perinatal management". American Family Physician. 60 (3): 829–36, 839. PMID   10498110.
  51. Barton JR, Sibai BM (December 2004). "Diagnosis and management of hemolysis, elevated liver enzymes, and low platelets syndrome". Clin Perinatol. 31 (4): 807–33. doi:10.1016/j.clp.2004.06.008. PMID   15519429.
  52. Pritchard JA, Weisman R Jr, Ratnoff OD, Vosburgh GJ (Jan 1954). "Intravascular hemolysis, thrombocytopenia and other hematologic abnormalities associated with severe toxemia of pregnancy". N Engl J Med. 250 (3): 89–98. doi:10.1056/NEJM195401212500301. PMID   13119851.