Prostaglandin EP1 receptor

Last updated
PTGER1
Identifiers
Aliases PTGER1 , EP1, EP1 receptor, prostaglandin E receptor 1
External IDs OMIM: 176802 MGI: 97793 HomoloGene: 738 GeneCards: PTGER1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000955

NM_013641

RefSeq (protein)

NP_000946

NP_038669

Location (UCSC) Chr 19: 14.47 – 14.48 Mb Chr 8: 84.39 – 84.4 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Prostaglandin E2 receptor 1 (EP1) is a 42kDa prostaglandin receptor encoded by the PTGER1 gene. EP1 is one of four identified EP receptors, EP1, EP2, EP3, and EP4 which bind with and mediate cellular responses principally to prostaglandin E2) (PGE2) and also but generally with lesser affinity and responsiveness to certain other prostanoids (see Prostaglandin receptors). [5] Animal model studies have implicated EP1 in various physiological and pathological responses. However, key differences in the distribution of EP1 between these test animals and humans as well as other complicating issues make it difficult to establish the function(s) of this receptor in human health and disease. [6]

Contents

Gene

The PTGER1 gene is located on human chromosome 19 at position p13.12 (i.e. 19p13.12), contains 2 introns and 3 exons, and codes for a G protein-coupled receptor (GPCR) of the rhodopsin-like receptor family, Subfamily A14 (see rhodopsin-like receptors#Subfamily A14). [7]

Expression

Studies in mice, rats, and guinea pigs have found EP1 Messenger RNA and protein to be expressed in the papillary collecting ducts of the kidney, in the kidney, lung, stomach, thalamus, and in the dorsal root ganglia neurons as well as several central nervous system sites. [8] However, the expression of EP1 In humans, its expression appears to be more limited: EP1 receptors have been detected in human mast cells, pulmonary veins, keratinocytes, myometrium, and colon smooth muscle. [6] [9]

Ligands

Activating ligands

The following standard prostaglandins have the following relative potencies in binding to and activating EP1: PGE2PGE1>PGF2alpha>PGD2. The receptor binding affinity Dissociation constant Kd (i.e. ligand concentration needed to bind with 50% of available EP1 receptors) is ~20 nM and that of PGE1 ~40 for the mouse receptor and ~25 nM for PGE2 with the human receptor. [9] [10]

Because PGE2 activates multiple prostanoid receptors and has a short half-life in vivo due to its rapidly metabolism in cells by omega oxidation and beta oxidation], metabolically resistant EP1-selective activators are useful for the study of EP1's function and could be clinically useful for the treatment of certain diseases. Only one such agonist that is highly selective in stimulating EP1 has been synthesized and identified, ONO-D1-OO4. This compound has a Ki inhibitory binding value (see Biochemistry#Receptor/ligand binding affinity) of 150 nM compared to that of 25 nM for PGE2 and is therefore ~5 times weaker than PGE2. [9]

Inhibiting ligands

SC51322 (Ki=13.8 nM), GW-848687 (Ki=8.6 nM), ONO-8711, SC-19220, SC-51089, and several other synthetic compounds given in next cited reference are selective competitive antagonists for EP1 that have been used for studies in animal models of human diseases. Carbacylin, 17-phenyltrinor PGE1, and several other tested compounds are dual EP1/EP3 antagonists (most marketed prostanoid receptor antagonists exhibit poor receptor selectivity). [9]

Mechanism of cell activation

When initially bound to PGE2 or other stimulating ligand, EP1 mobilizes G proteins containing the Gq alpha subunit (Gαq/11)-G beta-gamma complex. These two subunits in turn stimulate the Phosphoinositide 3-kinase pathway that raises cellular cytosolic Ca2+ levels thereby regulating Ca2+-sensitive cell signal pathways which include, among several others, those that promote the activation of certain protein kinase C isoforms. [6] Since, this rise in cytosolic Ca2+ can also contract muscle cells, EP1 has been classified as a contractile type of prostanoid receptor. The activation of protein kinases C feeds back to phosphorylate and thereby desensitizes the activated EP1 receptor (see homologous desensitization but may also desensitize other types of prostanoid and non-prostanoid receptors (see heterologous desensitization). These desensitizations limit further EP1 receptor activation within the cell. [6] [10] [11] Concurrently with the mobilization of these pathways, ligand-activated EP1 stimulates ERK, p38 mitogen-activated protein kinases, and CREB pathways that lead to cellular functional responses. [12]

Function

Studies using animals genetically engineered to lack EP1 and supplemented by studies using treatment with EP1 receptor antagonists and agonists indicate that this receptor serves several functions. 1) It mediates hyperalgesia due to EP11 receptors located in the central nervous system but suppresses pain perception due to E1 located on dorsal root ganglia neurons in rats. Thus, PGE2 causes increased pain perception when administered into the central nervous system but inhibits pain perception when administered systemically[ citation needed ]; 2) It promotes colon cancer development in Azoxymethane-induced and APC gene knockout mice. 3) It promotes hypertension in diabetic mice and spontaneously hypertensive rats. 4) It suppresses stress-induced impulsive behavior and social dysfunction in mice by suppressing the activation of Dopamine receptor D1 and Dopamine receptor D2 signaling. 5) It enhances the differentiation of uncommitted T cell lymphocytes to the Th1 cell phenotype and may thereby favor the development of inflammatory rather than allergic responses to immune stimulation in rodents. Studies with human cells indicate that EP1 serves a similar function on T cells. 6) It may reduce expression of Sodium-glucose transport proteins in the apical membrane or cells of the intestinal mucosa in rodents. [6] [12] [13] [14] 7) It may be differentially involved in etiology of acute brain injuries. Pharmacological inhibition or genetic deletion of EP1 receptor produce either beneficial or deleterious effects in rodent models of neurological disorders such as ischemic stroke, [15] epileptic seizure, [16] surgically induced brain injury [17] and traumatic brain injury. [18]

Clinical studies

EP1 receptor antagonists have been studied clinically primarily to treat hyperalgesia. Numerous EP antagonists have been developed including SC51332, GW-848687X, a benzofuran-containing drug that have had some efficacy in treating various hyperalgesic syndromes in animal models. None have as yet been reported to be useful in humans. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Prostaglandin</span> Group of physiologically active lipid compounds

Prostaglandins (PG) are a group of physiologically active lipid compounds called eicosanoids having diverse hormone-like effects in animals. Prostaglandins have been found in almost every tissue in humans and other animals. They are derived enzymatically from the fatty acid arachidonic acid. Every prostaglandin contains 20 carbon atoms, including a 5-carbon ring. They are a subclass of eicosanoids and of the prostanoid class of fatty acid derivatives.

<span class="mw-page-title-main">Eicosanoid</span> Class of compounds

Eicosanoids are signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids (PUFAs) that are, similar to arachidonic acid, around 20 carbon units in length. Eicosanoids are a sub-category of oxylipins, i.e. oxidized fatty acids of diverse carbon units in length, and are distinguished from other oxylipins by their overwhelming importance as cell signaling molecules. Eicosanoids function in diverse physiological systems and pathological processes such as: mounting or inhibiting inflammation, allergy, fever and other immune responses; regulating the abortion of pregnancy and normal childbirth; contributing to the perception of pain; regulating cell growth; controlling blood pressure; and modulating the regional flow of blood to tissues. In performing these roles, eicosanoids most often act as autocrine signaling agents to impact their cells of origin or as paracrine signaling agents to impact cells in the proximity of their cells of origin. Eicosanoids may also act as endocrine agents to control the function of distant cells.

<span class="mw-page-title-main">Prostacyclin</span> Chemical compound

Prostacyclin (also called prostaglandin I2 or PGI2) is a prostaglandin member of the eicosanoid family of lipid molecules. It inhibits platelet activation and is also an effective vasodilator.

Prostaglandin E<sub>2</sub> Chemical compound

Prostaglandin E2 (PGE2), also known as dinoprostone, is a naturally occurring prostaglandin with oxytocic properties that is used as a medication. Dinoprostone is used in labor induction, bleeding after delivery, termination of pregnancy, and in newborn babies to keep the ductus arteriosus open. In babies it is used in those with congenital heart defects until surgery can be carried out. It is also used to manage gestational trophoblastic disease. It may be used within the vagina or by injection into a vein.

<span class="mw-page-title-main">Thromboxane receptor</span> Mammalian protein found in Homo sapiens

The thromboxane receptor (TP) also known as the prostanoid TP receptor is a protein that in humans is encoded by the TBXA2R gene, The thromboxane receptor is one among the five classes of prostanoid receptors and was the first eicosanoid receptor cloned. The TP receptor derives its name from its preferred endogenous ligand thromboxane A2.

Most of the eicosanoid receptors are integral membrane protein G protein-coupled receptors (GPCRs) that bind and respond to eicosanoid signaling molecules. Eicosanoids are rapidly metabolized to inactive products and therefore are short-lived. Accordingly, the eicosanoid-receptor interaction is typically limited to a local interaction: cells, upon stimulation, metabolize arachidonic acid to an eicosanoid which then binds cognate receptors on either its parent cell or on nearby cells to trigger functional responses within a restricted tissue area, e.g. an inflammatory response to an invading pathogen. In some cases, however, the synthesized eicosanoid travels through the blood to trigger systemic or coordinated tissue responses, e.g. prostaglandin (PG) E2 released locally travels to the hypothalamus to trigger a febrile reaction. An example of a non-GPCR receptor that binds many eicosanoids is the PPAR-γ nuclear receptor.

Prostaglandin receptors or prostanoid receptors represent a sub-class of cell surface membrane receptors that are regarded as the primary receptors for one or more of the classical, naturally occurring prostanoids viz., prostaglandin D2,, PGE2, PGF2alpha, prostacyclin (PGI2), thromboxane A2 (TXA2), and PGH2. They are named based on the prostanoid to which they preferentially bind and respond, e.g. the receptor responsive to PGI2 at lower concentrations than any other prostanoid is named the Prostacyclin receptor (IP). One exception to this rule is the receptor for thromboxane A2 (TP) which binds and responds to PGH2 and TXA2 equally well.

Prostaglandin H<sub>2</sub> Chemical compound

Prostaglandin H2 is a type of prostaglandin and a precursor for many other biologically significant molecules. It is synthesized from arachidonic acid in a reaction catalyzed by a cyclooxygenase enzyme. The conversion from Arachidonic acid to Prostaglandin H2 is a two step process. First, COX-1 catalyzes the addition of two free oxygens to form the 1,2-Dioxane bridge and a peroxide functional group to form Prostaglandin G2. Second, COX-2 reduces the peroxide functional group to a Secondary alcohol, forming Prostaglandin H2. Other peroxidases like Hydroquinone have been observed to reduce PGG2 to PGH2. PGH2 is unstable at room temperature, with a half life of 90-100 seconds, so it is often converted into a different prostaglandin.

Prostaglandin DP<sub>1</sub> receptor Protein-coding gene in the species Homo sapiens

The Prostaglandin D2 receptor 1 (DP1), a G protein-coupled receptor encoded by the PTGDR1 gene (also termed PTGDR), is primarily a receptor for prostaglandin D2 (PGD2). The receptor is a member of the Prostaglandin receptors belonging to the Subfamily A14 of rhodopsin-like receptors. Activation of DP1 by PGD2 or other cognate receptor ligands is associated with a variety of physiological and pathological responses in animal models.

Prostaglandin EP<sub>4</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin E2 receptor 4 (EP4) is a prostaglandin receptor for prostaglandin E2 (PGE2) encoded by the PTGER4 gene in humans; it is one of four identified EP receptors, the others being EP1, EP2, and EP3, all of which bind with and mediate cellular responses to PGE2 and also, but generally with lesser affinity and responsiveness, certain other prostanoids (see Prostaglandin receptors). EP4 has been implicated in various physiological and pathological responses in animal models and humans.

Prostaglandin DP<sub>2</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin D2 receptor 2 (DP2 or CRTH2) is a human protein encoded by the PTGDR2 gene and GPR44. DP2 has also been designated as CD294 (cluster of differentiation 294). It is a member of the class of prostaglandin receptors which bind with and respond to various prostaglandins. DP2 along with Prostaglandin DP1 receptor are receptors for prostaglandin D2 (PGD2). Activation of DP2 by PGD2 or other cognate receptor ligands has been associated with certain physiological and pathological responses, particularly those associated with allergy and inflammation, in animal models and certain human diseases.

Prostaglandin EP<sub>2</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin E2 receptor 2, also known as EP2, is a prostaglandin receptor for prostaglandin E2 (PGE2) encoded by the human gene PTGER2: it is one of four identified EP receptors, the others being EP1, EP3, and EP4, which bind with and mediate cellular responses to PGE2 and also, but with lesser affinity and responsiveness, certain other prostanoids (see Prostaglandin receptors). EP has been implicated in various physiological and pathological responses.

Prostaglandin EP<sub>3</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin EP3 receptor (53kDa), also known as EP3, is a prostaglandin receptor for prostaglandin E2 (PGE2) encoded by the human gene PTGER3; it is one of four identified EP receptors, the others being EP1, EP2, and EP4, all of which bind with and mediate cellular responses to PGE2 and also, but generally with lesser affinity and responsiveness, certain other prostanoids (see Prostaglandin receptors). EP has been implicated in various physiological and pathological responses.

<span class="mw-page-title-main">Prostaglandin F receptor</span> Protein-coding gene in the species Homo sapiens

Prostaglandin F receptor (FP) is a receptor belonging to the prostaglandin (PG) group of receptors. FP binds to and mediates the biological actions of Prostaglandin F (PGF). It is encoded in humans by the PTGFR gene.

<span class="mw-page-title-main">Prostacyclin receptor</span> Mammalian protein found in Homo sapiens

The Prostacyclin receptor, also termed the prostaglandin I2 receptor or just IP, is a receptor belonging to the prostaglandin (PG) group of receptors. IP binds to and mediates the biological actions of prostacyclin (also termed Prostaglandin I2, PGI2, or when used as a drug, epoprostenol). IP is encoded in humans by the PTGIR gene. While possessing many functions as defined in animal model studies, the major clinical relevancy of IP is as a powerful vasodilator: stimulators of IP are used to treat severe and even life-threatening diseases involving pathological vasoconstriction.

<span class="mw-page-title-main">HPGD</span> Protein-coding gene in humans

Hydroxyprostaglandin dehydrogenase 15-(NAD), also called 15-hydroxyprostaglandin dehydrogenase [NAD+], is an enzyme that in humans is encoded by the HPGD gene.

<span class="mw-page-title-main">MPGES-1</span> Protein-coding gene in the species Homo sapiens

Microsomal prostaglandin E synthase-1 (mPGES-1) or Prostaglandin E synthase is an enzyme that in humans is encoded by the PTGES gene.

<span class="mw-page-title-main">Sulprostone</span> Chemical compound

Sulprostone is an analogue of prostaglandin E2 (PGE2) that has oxytocic activity in assays of rat kidney cells and tissues. There are four known receptors which mediate various but often different cellular and tissue responses to PGE2: prostaglandin EP1 receptor, prostaglandin EP2 receptor, prostaglandin EP3 receptor, and prostaglandin EP4 receptor. Sulprosotone binds to and activates the prostaglandin EP3 receptor with far greater efficacy than the other PGE2 receptors and also has the advantage of being relatively resistant, compared with PGE2, to becoming metabolically degraded. It is listed as a comparatively weak receptor agonist of the prostaglandin EP1 receptor. In all events, this as well as other potent synthetic EP3 receptor antagonists have the realized or potential ability to promote the beneficial effects of prostaglandin EP3 receptor activation.

The prostaglandin D2 (PGD2) receptors are G protein-coupled receptors that bind and are activated by prostaglandin D2. Also known as PTGDR or DP receptors, they are important for various functions of the nervous system and inflammation. They include the following proteins:

The prostaglandin E2 (PGE2) receptors are G protein-coupled receptors that bind and are activated by prostaglandin E2. They are members of the prostaglandin receptors class of receptors and include the following Protein isoforms:

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000160951 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000019464 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: PTGER1 prostaglandin E receptor 1 (subtype EP1), 42kDa".
  6. 1 2 3 4 5 Woodward DF, Jones RL, Narumiya S (September 2011). "International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress". Pharmacological Reviews. 63 (3): 471–538. doi: 10.1124/pr.110.003517 . PMID   21752876.
  7. "PTGER1 prostaglandin E receptor 1 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov.
  8. Ricciotti E, FitzGerald GA (May 2011). "Prostaglandins and inflammation". Arteriosclerosis, Thrombosis, and Vascular Biology. 31 (5): 986–1000. doi:10.1161/ATVBAHA.110.207449. PMC   3081099 . PMID   21508345.
  9. 1 2 3 4 5 Markovič T, Jakopin Ž, Dolenc MS, Mlinarič-Raščan I (January 2017). "Structural features of subtype-selective EP receptor modulators". Drug Discovery Today. 22 (1): 57–71. doi: 10.1016/j.drudis.2016.08.003 . PMID   27506873.
  10. 1 2 Narumiya S, Sugimoto Y, Ushikubi F (October 1999). "Prostanoid receptors: structures, properties, and functions". Physiological Reviews. 79 (4): 1193–226. doi:10.1152/physrev.1999.79.4.1193. PMID   10508233. S2CID   7766467.
  11. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2014). "Cyclooxygenase pathways". Acta Biochimica Polonica. 61 (4): 639–49. doi: 10.18388/abp.2014_1825 . PMID   25343148.
  12. 1 2 Moreno JJ (December 2016). "Eicosanoid receptors: Targets for the treatment of disrupted intestinal epithelial homeostasis". European Journal of Pharmacology. 796: 7–19. doi:10.1016/j.ejphar.2016.12.004. PMID   27940058. S2CID   1513449.
  13. Matsuoka T, Narumiya S (August 2008). "The roles of prostanoids in infection and sickness behaviors". Journal of Infection and Chemotherapy. 14 (4): 270–8. doi:10.1007/s10156-008-0622-3. PMID   18709530. S2CID   207058745.
  14. Matsuoka T, Narumiya S (September 2007). "Prostaglandin receptor signaling in disease". TheScientificWorldJournal. 7: 1329–47. doi: 10.1100/tsw.2007.182 . PMC   5901339 . PMID   17767353.
  15. Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, Kunz A, Cho S, Orio M, Iadecola C (February 2006). "Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity". Nature Medicine. 12 (2): 225–9. doi:10.1038/nm1362. PMID   16432513. S2CID   33649705.
  16. Fischborn SV, Soerensen J, Potschka H (September 2010). "Targeting the prostaglandin E2 EP1 receptor and cyclooxygenase-2 in the amygdala kindling model in mice". Epilepsy Research. 91 (1): 57–65. doi:10.1016/j.eplepsyres.2010.06.012. PMID   20655707. S2CID   36191106.
  17. Khatibi NH, Jadhav V, Matus B, Fathali N, Martin R, Applegate R, Tang J, Zhang JH (2011). "Prostaglandin E2 EP1 receptor inhibition fails to provide neuroprotection in surgically induced brain-injured mice". Acta Neurochirurgica. Supplement. Acta Neurochirurgica Supplementum. 111: 277–81. doi:10.1007/978-3-7091-0693-8_46. ISBN   978-3-7091-0692-1. PMC   3569069 . PMID   21725768.
  18. Glushakov AV, Fazal JA, Narumiya S, Doré S (2014). "Role of the prostaglandin E2 EP1 receptor in traumatic brain injury". PLOS ONE. 9 (11): e113689. Bibcode:2014PLoSO...9k3689G. doi: 10.1371/journal.pone.0113689 . PMC   4245217 . PMID   25426930.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.